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Abstract—This paper describes the instantiation of a type of 

Learning Automata (LA) that is all but unknown.  Derived from 

the later theories of Alan Turing the LA is a dynamic, artifactual 

model of natural intelligence that uses cybernetic theory to derive 

machine intelligence.  Similarly, the bibliographic references 

cited here may be unknown to readers unfamiliar with this 

branch of self-organizing (cybernetic) systems research.  Simply 

put, this research is based on an algorithm described by Turing 

and named by him the P-Type unorganized machine.  The 

research instantiates the P-Type algorithm in a multi-agent 

simulation (MAS) and explores its potential for extensibility.  The 

only other known experiment that used a P-Type machine as a 

system controller (excluding the work of Turing) instantiated the 

LA in a single agent system.  The current work builds upon that 

previous experiment; also described here. 
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I.  INTRODUCTION  

A MAS where foraging behavior, survival tactics, inter-
agent socializing, and vehicular hosts steered by a novel, need-
based, drive-reducing LA architecture is described.  Each 
“agency” in this MAS was composed of four, independent P-
Type unorganized machines acting as individual “agents.”  At 
load-time, the user could select the initial number of predatory 
and prey host icons for instantiation within an enclosed maze.  
During run-time, the icons were free to move about the maze 
until they were eaten, their energy levels were depleted, or they 
adapted, found available food, avoided their predators, and 
survived.  Within a respective agency, one of four LA was 
selected by afferent conditions to equilibrate over current 
sensory affect provided by the respective host icon and an 
isopraxis ethology.  All complex behaviors in the hosts were 
emergent.  Appearing as icon hosts with differences in color, 
size, and markings, predators were distinguishable from prey.  
The maze was seen from overhead.  The program used two 
physically separate computing platforms: a maze computer and 
a control computer.  The former machine generated the 
simulation of a multi-baffle, porous-wall (open trellis-like) 
maze containing the icon hosts.  The latter machine generated 
efferent control signals for the predatory and prey hosts, and 
received sensory afferents as inputs from the former machine in 
return.  Olfaction, touch, and hunger/satiation were the afferent 
senses.  Motor commands were the efferents. 

II. REVIEW 

The research reviewed here had four goals: 1) build a 
simulated, multi-agent colony of predators and consumable 
prey within an artificial maze,  2) create a method to 
parameterize and parallelize multiple separate learning 
automata so that each could independently reduce a specific 
drive as an individual agent within a more complex combined 
agency,  3) show that an equilibratory function (operating over 
sensation and an isopraxis ethology) could enumerate 
increasingly competent motor and social behaviors, and 4)  
demonstrate the potential for the system to create simple, 
extensible models recognizable to social scientists.  That work 
is described in the sections that follow. 

A. Goal 1 - Build a Maze. 

The first goal was to construct (in software) a multi-agent 
colony of simulated predators and consumable prey.  A 
simulation that supported 0-5 simulated predators and 0-25 
consumable prey was developed.  The MAS operated using 
random, interleaved activation through a control scheme 
initiated in the control systems computer. 

The control scheme can be described as a sensori-motor 
loop.  The iterative process involved: 1) randomly selecting a 
host (implying a corresponding control agency), 2) 
determining what agent within that agency would process the 
environment last sensed by that particular host, 3) retrieving 
the stored sensations the host encountered when it was last 
active, 4) processing those sensations, acting/reacting to the 
maze (and any other entities in the environment) according to 
or in response to those sensations, 5) receiving stimuli from 
the maze environment in return, 6) storing those sensed stimuli 
for use on the next activation cycle, and 7) releasing control to 
the next host selected by the control computer. 

Concern for processor bandwidth and the extensibility of 
experimental results to mobile robotics applications led to the 
use of a distributed, two-computer design.  Thus, while one 
computer generated the simulated environment (the maze and 
the host icons), the other computer supplied the control 
systems (or agencies) to the hosts, respectively.  Ultimately, 
the colony was placed in a simulated, reconfigurable training 
enclosure that resembled a maze.  A screenshot of the maze 
immediately after host generation is shown in Fig. 1. 

Microsoft Visual BASIC was selected as the compiled 
language.  It offered support for a mixed object oriented and 



procedural software design architecture, and has well known 
visual appeal.  The software architecture under this version of 
Visual BASIC supported up to 175 host/agency icon objects.  
However, only 30 host icons were ever instantiated during this 
work.  Fig. 1 shows 30 of the icons at the start of a simulated 
run. 

 
Figure 1.  Overhead at the start, the icon hosts were placed randomly.  They 

quickly fell to the floor to begin the simulation.  Four gray circles in the floor 

were prey feed-stations that could emit a simulated odor (only one was active 

at a time).  Predators and prey emitted unique scents of controllable intensity. 

In Fig. 1, the hosts are shown placed randomly within the 
maze.  After the simulation began, the icons would quickly fall 
to the floor of the maze (obviously between the simulated 
baffles) and would begin to move about.  The maximum 
simulated numbers were one agency per host icon and four 
agents per agency for a total of 120 agents (120 independent 
LA) driving the 30 hosts in the maze.   

B. Goal 2 – Parameterize the Learning Automata. 

The second goal was to create an algorithm that 
parameterized and parallelized multiple, independent LA and 
achieved random, interleaved operation of those LA under an 
agent-based model (ABM) paradigm within a MAS 
environment.  An extensible, fully parameterized model of the 
Turing P-Type unorganized machine [1] was developed to 
reduce the individual drives of the agents and satisfy the 
requirements just named.  These P-Type machines are the LA.  
They correspond directly to the individual agents in the 
agencies that controlled the hosts.  Each agent, in turn, 
serviced one need-based “drive” that required Hull inspired 
drive reduction [2]. 

Since control authority over 30 individual hosts was 
required, each host had to have its own controller, or control 
agency.  Additionally, it was determined that each agency 
would be given a set of four independent P-Type unorganized 
machines (acting as discrete drive reducing agents) and that 
these lower-level P-Type agents were expected to produce an 
aggregate control product at the higher-level agency.  Finally, 
as already stated, the activities of each host/agency in the 
maze needed to be sequenced as part of a random activation 

scheme over the set of all hosts existing at the time.  Fig. 2 
shows a block diagram of one control agency.  Each LA (or 
agent) corresponds to one Finite State Machine 
(FSM)/Transducer block in this diagram.  A set of four LA 
made up one agency. 

 
Figure 2.  A block diagram of input, output, the four LA/FSM/Transducers, 

and reconfigurable isopraxis library sources. 

C. Goal 3 – Equilibrate Increasingly Competent Behaviors. 

The third goal involved showing that an equilibratory [3] 
function (operating over sensation and an isopraxis ethology 
[4]) could enumerate competent motor and social behaviors 
through the P-Types.  Clearly, colony members had to 
equilibrate over sensation and isopraxis ethology in order to 
reduce simulated physiological, survival-related, and social 
drives.  Simulation of multiple hosts, observation of host 
behaviors, and inspection of the agency output behavior data 
files showed that the equilibratory function operated per the 
requirement and that an enumerated set of emergent behaviors 
were in fact created and used. 

However, a difficulty arose in deriving a quantitative 
metric for the word “competent.”  Although not conclusive, 
one approach to dealing with this problem appeared in an 
earlier work using similar P-Type LA albeit in a more 
constrained setting.  Rouly [5] described an experiment 
preliminary to the current work.  In that experiment, only one 
P-Type LA was instantiated per host and only one host was 
simulated in a maze at a time.  That experimental 
methodology allowed for an analysis of the behavior of the LA 
under highly controlled conditions.  Fig. 3 shows a histogram 
depicted in that work and is reprinted here. 

 
The figure shows (and describes) the experimental results 

of a comparative mass trials event involving over 500 
host/agent instantiations.  The results were statistically 
significant especially when one considers the data was taken 
from machines operating as pure “discovery learners” and not 
stimulus/response, or “interference” learners.1  [Note:  Sidebar 

                                                           
1 Consistent with Turing (1948, p.45), “interference” learning (or behavior 

modification), is possible and highly desirable with agencies based on P-

Type machines.  They respond well to anticipatory stimuli and stimulus 
reinforcement.



text and line markings have been added to the original 
histogram to help explain the content.] 

 

Figure 3.  From Rouly 2000, p. 49, Comparison between control and 

experimental agents. 

D. Goal 4 – An Extensible System Model. 

The fourth goal involved demonstrating the extensibility of 
the system to model problems recognizable in the social 
sciences.  It is suggested that the system described here could 
be used to examine questions pertaining to Maslow’s 
Hierarchy of Needs [6].  Fig. 4 shows a typical 5-level version 
of Maslow’s pyramid well known by psychologists and 
educators. 

 

Figure 4.  A typical 5-tier version of Maslow’s Hierarchy of Needs. 

To understand this suggestion, consider the priority 
decoder in the block diagram of one control agency.  (See Fig. 
2.)  Notice that all sensory stimuli flow through the priority 
decoder to reach the LAs.  In the system developed for this 
research, the priority decoder dictated which of the four 
LA/FSM/Transducers would activate “hierarchically.”  It did 
this according to programmer hypotheses about the 
relationship of stimuli to agency/host-needs and “reasonable” 
reactions.  Thus, whether or when an agency/host responded to 
a stimulus was a function of emergent (learned) agent 
behaviors and (innate) programmer stimuli-LA mapping.  This 
learned versus “innate” process brought the intuitive appeal of 
Maslow’s pyramid strongly into question more than once 

during the software development cycle and during 
experiments. 

Fig. 5 shows a typical mapping of stimuli to agency/host 
heuristics.  The mapping was used (for a time) during the 
development of the current work.  The mapping shows what 
antecedent stimuli triggered the onset of a particular drive, 
what stimuli tended to reduce a drive (precipitating competent 
behaviors to emerge), and what stimuli ultimately reduced a 
drive completely. 

 

Figure 5.  32-bit afferents mapped to the LA/FSM and the corresponding 

heuristic implication. 

III. SUMMARY  

Turing P-Type unorganized machines are adaptive, easy to 
implement, and are resilient in the face of modification.  They 
provide the machine intelligence researcher a straightforward 
approach to creating an artificial intelligence, “conditioning” 
the artificial intelligence/host using behavior reinforcement 
techniques similar to those used with naturally intelligent 
systems, and then to go back and examine the response 
repertoire of the artificial agency/host with regard to new 
stimuli and stimulus situations.  Learning Automata of the 
type reported here deserve further study and may be extensible 
to modeling selected problems in the social sciences. 
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