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Abstract—Location-based social networks (LBSNs) have been
studied extensively in recent years. However, utilizing real-world
LBSN data sets yields several weaknesses: sparse and small data
sets, privacy concerns, and a lack of authoritative ground-truth.
To overcome these weaknesses, we leverage a large-scale LBSN
simulation to create a framework to simulate human behavior
and to create synthetic but realistic LBSN data based on human
patterns of life. Such data not only captures the location of users
over time but also their interactions via social networks. Patterns
of life are simulated by giving agents (i.e., people) an array of
“needs” that they aim to satisfy, e.g., agents go home when they
are tired, to restaurants when they are hungry, to work to cover
their financial needs, and to recreational sites to meet friends
and satisfy their social needs. While existing real-world LBSN
data sets are trivially small, the proposed framework provides
a source for massive LBSN benchmark data that closely mimics
the real-world. As such, it allows us to capture 100% of the
(simulated) population without any data uncertainty, privacy-
related concerns, or incompleteness. It allows researchers to
see the (simulated) world through the lens of an omniscient
entity having perfect data. Our framework is made available
to the community. In addition, we provide a series of simulated
benchmark LBSN data sets using different synthetic towns and
real-world urban environments obtained from OpenStreetMap.
The simulation software and data sets, which comprise gigabytes
of spatio-temporal and temporal social network data, are made
available to the research community.

Index Terms—Data Generation, Location-Based Social Net-
works, Temporal Social Network Data, Social Simulation, Pat-
terns of Life, Trajectory Data Generation, Social Network Data
Generation

I. INTRODUCTION

A social network is a structure consisting of individual
users connected by a social relationship such as friendship.
Social networking services build on real-world social networks
through online platforms, providing ways for users to share
ideas, activities, events, and interests. For example, users can
share location-tagged images with their friends (e.g., Insta-
gram), rate restaurants/bars, recommend them to their friends
(e.g., Foursquare), or log jogging and bicycle trails for sports
analysis and experience sharing (e.g., Bikely). This dimension
of location bridges the gap between the physical world and on-
line social networking services. As location is one of the most
important components of user context, extensive knowledge
about an individual’s interests, behaviors, and relationships

with others can be learned from their locations. These kinds
of location-tagged and location-driven social structures are
known as location-based social networks (LBSNs). Research
on LBSNs has become a vivid topic in the last decade, enabled
by many practical applications (surveyed in Section II) and
rooted in the mobile data management community (e.g., [37],
[49], [59]–[61], [67], [73], [73], [91], [103], [107]). Publicly
available real-world data sets have been the driving force for
LBSN research in recent years, but such data sets exhibit
certain weaknesses:

• Data sparsity: LBSN data exhibits an extreme long-tail
distribution of user behavior. In all existing available data
sets, the vast majority of users has less than ten check-ins
[43]. Besides, the number of locations visited by a user
is usually only a small portion of all locations that user
has visited. This results in the density of the data used in
experimental studies on LBSNs to be only usually around
0.1% [43].

• Small data sets: Existing data sets used to train models
are small, as detailed in Section II-B. They tend to only
cover a short period of time, a small number of users, or
a small number of check-ins.

• Privacy Concerns: Most LBSN data was published by
users and consented for public use. However, some users
may revoke this consent, for instance, by deleting their
LBSN account. Such changes will not be reflected in
existing LBSN data sets and thus creating severe privacy
concerns.

• No ground-truth: There is no way to assess, in existing
LBSN data, whether check-ins are missing or if the social
network is correct and complete. Without knowing the
ground truth, it is difficult to assess the accuracy and
robustness of existing experimental results using LBSN
data.

Furthermore, a recent study [33] has shown that the lower
bound of predictability of the human spatio-temporal behavior
(defined in [33]) is as low as 27%. They conclude that “Re-
searchers working with LBSN data sets are often confronted
by themselves or others with doubts regarding the quality or
the potential of their data sets.” and that “it is reasonable to
be skeptical” [33].



To overcome these weaknesses, we developed a location-
based social network simulation capable of creating multiple
artificial but socially plausible, large-scale LBSN data sets
as envisioned in [27]. These large and dense data sets will
allow the broader social and data science research communities
to test LBSN-related hypotheses without encountering issues
pertaining to data sparsity, privacy concerns, and lack of
ground-truth. Our simulation and the generated synthetic data
sets enable investigation of what is now not currently possible
even if there existed provenance of complete, high-fidelity,
real-world LBSN data (i.e., ‘perfect’ Foursquare data). In the
remainder of this paper and beginning in Section II, we provide
an overview of LBSNs along with application areas before
turning our attention to existing LBSN data sets. In Section
III, we enumerate what we see to be the shortcomings of
current data sets and attempt to explain our rationale for
building an agent-based location-based social simulation to
address those shortcomings. This is followed by our simulation
results (Section IV) which demonstrates its utility for LBSN
research. Section V outlines some research applications that
can benefit from our simulated data, and Section VI provides
a brief conclusion to the paper.

II. RELATED WORK

Users [102] and locations [104] are the two major subjects
that interact with each other in LBSNs. As such, we can
observe three types of networks that constitute an LBSN, (i)
a user-user social network, (ii) a location-location spatial net-
work, and (iii) a user-location bipartite network. Figure 1 gives
a schematic overview of these networks and their interaction.
Like in a traditional social network, users are connected via
relationships such as friend, family, or co-worker. However,
when locations are added, spatial network connections can also
be defined by proximity in terms of path distance, they may
also introduce connections between locations that have similar
semantic properties (e.g., of the same location type). Finally,
the core feature of a LBSN is the user-location network, which
bridges users and locations (Figure 1). This bipartite network
between users and locations captures events of users visiting a
physical location. Such so-called “check-ins” may be enriched
with qualitative information, such as user recommendations,
which may be explicit (e.g., on a scale from one to five stars),
or implicit, (e.g., by observing that a user frequently checks-in
at the same location).

A. Applications of LBSNs

LBSN data has been leveraged for a plethora of applications,
an overview of which is given in Table I. The goal of this
section is not only to show the wide variety of applications
that are using LBSN data, but also to show that applications
are very vivid research topics. The data generated by our
proposed simulation framework will directly benefit all these
applications and all researchers by providing large and ground-
truth enriched data sets for a more thorough experimental
analysis and thus foster more informed decision making.

Fig. 1: LBSN Overview.

The initial work with respect to LBSN’s focused on model-
ing and describing human mobility patterns (e.g., [13], [15],
[52], [63], [64], [79], [80]), analyzing these patterns (e.g., [12],
[53], [73]), and explaining why users choose locations and
how social ties affect this choice (e.g., [69], [107]). Another
application is that of location recommendation, which lever-
ages check-ins of users and their ratings in the user-location
network to recommend new locations to users. This research
area not only has applications in helping a specific user to
explore new places within a city, but can also help third-
parties such as advertisers to provide specific advertisements.
Therefore, a plethora of recent research, surveyed in [6], has
studied this application (e.g., [8], [9], [17]–[20], [24], [30]–
[32], [34], [37]–[39], [41]–[44], [51], [62], [71], [72], [81],
[85], [86], [89]–[100]). A closely related application area
is that of Location Prediction (e.g., [5], [10], [22], [36],
[40], [59], [67], [84]), which attempts to predict the future
check-ins of users. Another active research field is LBSNs is
Friend Recommendation or Social Link Prediction (e.g.,
[11], [23], [48], [56], [65], [70], [75], [77], [82]), which
suggests new friends to users based on similar interests at
similar locations, while also having similar social connections.
Other research topics with respect to LBSNs include efficient
query processing (e.g., [1], [3], [4], [35], [60], [106],) finding
user communities (e.g., [74], [88], [101]), and estimating the
social influence of users (e.g., [76]).

While there has been a plethora of recent and interesting
research with respect to the LBSN applications as noted above,
the impact of LBSN research relies heavily on the quality of
data, which we turn to next (Section II-B) in order to show that
there is a considerable shortage of rich data sets. We will show
that the data sets most commonly used have in experiments are
relatively small, are limited in sample size for individual users,
and cannot provide authoritative ground-truth knowledge for
a meaningful evaluation of all these methods.

B. Existing LBSN data sets
Real-world LBSN data sets are a scarce resource due to the

privacy implications of making such data public. Also, service
providers consider such data sets invaluable when it comes
to providing a competitive product and are thus somewhat
unwilling to give researchers even sizable data sets. Table II
summarizes the main characteristics of publicly available data
sets that are intensively used by the LBSN research community
(see Table I for topics and references).



TABLE I: State-of-the-Art Related Work in LBSNs and Utilized Data Sets.
References Main topic Gowalla Foursquare Yelp Synthetic
[69], [107] LBSN Analysis X
[52], [53], [63], [79], [80] LBSN Analysis X
[12], [13], [15], [64], [107] LBSN Analysis X X
[73] LBSN Analysis X
[9], [32], [37], [41], [44], [71] Loc. Recommendation X
[19], [20], [38], [61], [62], [72], [81], [85], [86], [89], [90] Loc. Recommendation X
[18], [34], [51], [91]–[94], [97]
[8], [17], [31], [39], [42], [96], [100] Loc. Recommendation X X
[24], [99] Loc. Recommendation X
[95], [98] Loc. Recommendation X X
[43] Loc. Recommendation X X X
[30] Loc. Recommendation X X
[5], [36], [40], [84] Loc. Prediction X
[50], [59] Loc. Prediction X
[10], [22], [67] Loc. Prediction X X
[11], [23], [48], [56], [65], [70] Social Link Prediction X
[77], [82] Social Link Prediction X
[75] Social Link Prediction X X
[35], [106] Query Processing X
[1] Query Processing X
[3], [4], [60] Query Processing X X X
[83] Community Detection X
[74], [88], [101] Community Detection X
[76] Social Influence X

TABLE II: Publicly Available Real-World LBSN Data Sets.
Data set #Users #Locations #CheckIns #Links Period
Gowalla 319K 2.8M 36M 4.4M 20mo

BrightKite 58K 971K 4.49M 214k 30mo
Foursquare 2.7M 11.1M 90M 0 5mo

Yelp 1.00M 144K 4.10M 0 36mo

Gowalla: Collected and retrieved from the LBSN Gowalla
[41], which was launched in 2007 and closed in 2012. This
data set has the largest social network of any public LBSN data
set while the majority of users are inactive. After removing
users with less than 15 check-ins and removing locations
with less than ten visitors, more than half of the visitors are
eliminated [41]. A similar data set is that of Brightkite, which
is available at SNAP [66]. As can been seen in Table II,
Brightkite is smaller than the Gowalla data in every aspect.
Foursquare: In terms of the number of users and check-ins,
the largest publicly available LBSN data set was collected
from Foursquare [78]. However, this data set provides no
social network information.
Yelp: A large data set is published by Yelp as part of the
Yelp data set Challenge [87]. This data set provides additional
information, such as user-location ratings, user comments, user
information, and location information. Again, this data set
provides no social network information.
Synthetic Data: The problem of using sparse and noisy real-
world LBSN data has already been identified in previous
work (e.g., [3], [4], [30]). However, none of these works have
proposed a way to obtain plausible check-in data. For example,
[3], [4], [30] generated user-location check-ins at random us-
ing parametric distributions without considering the semantics
of the movement. While [60] created additional check-ins by
replication of Gowalla and Brightkite data, thus creating more
data for run-time evaluation purposes but without creating
more information.

One could, therefore, question whether the experimental
results of existing work on LBSNs may be considered con-
clusive, both in terms of scalability and effectiveness due
to a lack of large scale available data sets [33]. This paper
aims at closing this gap by proposing the means to generate
large scale and ground-truth based synthetic data sets through
simulation, which we turn to next. Synthetic data would allow
insights into what is possible concerning new and improved
geoinformation systems, but also in terms of privacy and
anonymization research without raising any privacy concerns.

III. LOCATION-BASED SOCIAL SIMULATION

In order to address the limitations of LBSN data sets as
discussed in Section II-B, we have created a LBSN simulation
framework for generating very large, high fidelity, and socially
plausible (yet not real) LBSN data. The framework simulates
individuals (i.e., agents) who live and travel in an urban
environment. Agents exhibit socially plausible behavior which
is based on well-respected psychology and social science
theories (e.g., [2], [47]). The agents’ needs and preferences
guide the choice of locations they visit, which may yield to
new friendships, depending on the type of locations where
they meet. Following the underlying spatial network, agents
visit specific locations which also results in specific travel
patterns emerging. Simulation parameters can be adjusted to
create social settings similar to the real-world allowing us
to create massive sets of simulated LBSN data. Such high
fidelity data sets contain all individuals of our simulated world
with certainty while not impacting the privacy of any human
subject in the real-world. As a deliverable, this research yields
synthetic LBSN data sets of hundreds of thousands of users,
scaling to years of observed user data, and thus creating
gigabytes of meaningful check-in and social interaction data
(as will be shown in Section IV).



A. Model Logic: Patterns of Life

The computational framework follows up our preliminary
work demonstrated in [29], which creates simulated worlds in
which agents move and interact with the environment and with
each other. In the work presented in this paper, we provide a
more comprehensive needs and behaviors which result in more
complex patterns of life and introduce social networks and
there formation. In addition, each simulation instance of our
framework is based on (real or synthetic) spatial networks with
locations and social networks of users. The agent model logic
used to generate the data is constructed based on people’s daily
patterns of life (PoL) supported by well-respected psychology
and social science theories (e.g., [2], [47]). Each individual
is equipped with the first three levels of the Maslow’s [47]
Hierarchy of Needs: (1) physiological, (2) safety, and (3)
belongingness and love needs. To satisfy their needs, agents
travel to sites on the underlying road network. Agents travel
on shortest paths at a constant walking speed of 1.4m/s,
regardless of traffic.

The most basic and highest prioritized needs are physiolog-
ical needs, which make agents rent an apartment, eat food at
home or at a restaurant when they are hungry, and sleep when
their internal circadian rhythm kicks-in according to their
individually computed wake-up times. The agent’s are driven
to reduce their physiological needs first. The second-level
needs begins with the agent engaging in a process instantiated
by the agents as they try to attain financial stability. This
second-level drive leads them into a process that begins by
them trying to find and keep a job. From there, they seek to
have enough income to pay for their own individually desired,
temporally projected, and fiscally anticipated (i.e., budgeted)
monthly costs in the world. Among the simulated costs we
require the agents to pay for things like rent, food at home or
in restaurants, education expenses for offspring, and voluntary
personal expenses associated with recreation. All costs must be
paid for by the individual agent from its own ‘earned’ income.
An agent’s job and pay scale is dependent on its education
level and momentary job market availability. Each agent has
a home, can move to a new home, has a job/work location,
and may change job/work over time. The underlying logic is
that an agent will usually stay in their job and home unless
their financial stability is broken due to an unexpected event
such as a roommate moving out. In such cases, they either
move into a different apartment with a lower cost or switch
to a better paying job.

Again, following Maslow’s [47] Hierarchy, agents must sat-
isfy physiological and safety needs first. Only after these needs
are met can higher levels of self-actualization corresponding
to belongingness and love (i.e., relationships and friendships)
be computed and executed. When the more basic needs from
the hierarchy are met, an agent may then choose to visit a
recreational site for the purpose of socialization. Recreation
sites are figurative ’hubs’ for socialization. At these places
agents may meet new peoples, create budding friendships, and
or improve their existing friendship bonds with others. In our

simulation, social relationships are simulated using a weighted
and directed social network. Agents are attracted to recreation
sites because of the agent’s individual age, their individual
income level, their own interests and the interests of others
who visited the site in recent times, and their proximity to
the site when the decision to visit the site is taken. When an
agent visits a recreational site and has no friends there, there
is a slight chance that the agent will establish a friendship
with a stranger (i.e., focal closure). This chance slightly
increases if the stranger is actually a friend’s friend (i.e.,
cyclic closure). Thus, co-location (i) increases one’s chances
of becoming friends with other people and (ii) to maintain
existing friendships. However, the lack of co-location, thus the
lack of social interaction, decreases one’s friendship strength,
which may eventually lead to a disappearing friendship. We
note that over years of simulation time, the agent’s aim is
to maximize attributes such as happiness, which is related to
making friendships and money balance, which is related to
job choice. With different agents having different goals, they
maximize different attributes. Restaurants are another type of
site used by agents to satisfy their physiological needs caused
by hunger. Agents who visit restaurants have the chance to
meet with their friends without coordination. Such meetings
increase the strength of an existing friendship. Each agent has
choices, such as preferring a certain type of restaurant, cafe,
or bar. The simulation stores and writes spatial and social
information for each agents into large, shared log-files which
can be processed and analyzed offline.

Fig. 2: New Orleans, Louisiana (NOLA), Mississippi River,
Lake Pontchartrain, and the ‘French Quarter’.

B. Framework Implementation

Our framework utilizes and extends the MASON (Multi-
Agent Simulation of Neighborhoods) open-source simulation
toolkit [45] and its GIS extension, GeoMASON [68]. MA-
SON is a fast discrete-event multi-agent simulation library
developed in Java. It was designed to be the foundation
for sizeable custom-purpose Java simulations by providing
the basic run-time infrastructure for simulation development.



Fig. 3: George Mason University (GMU), Fairfax, VA.

MASON has been used in the past to develop agent-based
models to describe complex social interaction that is based
on the agent’s location in space and time, including models
for riot prediction [57], simulating the spread of disease [14],
and the emergence of slums in urban environments [55].
Such simulations consider only a limited number of agents,
over only a few days of simulation time. One of the main
challenges we addressed is scaling the system, by memorizing
all previously computed shortest paths to avoid expensive
recomputation. While this version of our framework supports
only a single thread application, we plan to create a massively
scalable implementation building upon MASON’s upcoming
distributed option [46]. Our Java implementation can be found
at: https://github.com/gmuggs/pol.

IV. SIMULATION RESULTS

Having defined our overall approach to instantiating an
agent-based model that generates plausible location-based
social network data (Section III), we now provide details to
specific instantiations of our model, as well a discussion of
the respective quantitative data generated. All of the generated
data sets can be found at OSF (https://osf.io/e24th/). Due to the
excessive size of some of these LBSN data sets we are about to
introduce, we recommend that researchers interested in using
the data re-run the simulation locally instead of downloading
the data directly. Correctly parameterized executables are
available for download, and our simulation is fully serialized
and deterministic, such that the data generated locally is
guaranteed to be identical to the downloadable data.

A. Initialization

The goal of the generated data sets discussed in the fol-
lowing is to act as benchmark data sets for the LBSN com-
munity. Therefore, we generated a mix of real and synthetic
urban settings. Real road network and point-of-interest data
was obtained from OpenStreetMap (OSM) [54], where we
downloaded data for the greater New Orleans, LA (NOLA)
metropolitan area (cf. Figure 2) and the George Mason
University (GMU) office for Geo-Information Systems (GIS)
Facilities Archives [21] provided us with data for the Fairfax,
VA campus of GMU (cf. Figure 3). We also generated two
synthetic urban data sets differing in size and layout denoted

Fig. 4: Synthetic Villages - Small (Left) and Large (Right).

as Small (TownS) and Large (TownL) as shown in Figure 4.
These synthetic urban components were created using a spatial
network and place generator based in a generative grammar
similar to L-systems described in [28].

Within NOLA, the area we concentrated on was the historic
French Quarter (FQ). The GMU area captures the main
campus in Fairfax, VA. Both areas were prepared using QGIS
desktop GIS software [58] and JOSM [26]. Data preparation
involved editing the data sets to produce three separate shape-
files [16]: (i) building footprints, (ii) transportation networks
(road and sidewalk layers), and (iii) building purpose (i.e.,
residential, commercial, etc.).

For reproduction of the following data generation and
evaluation, we have compiled our Java source code into an ex-
ecutable Jar (https://github.com/gmuggs/pol/releases/tag/0.1)
including dependencies (libraries and maps). Our Java code
can be used to create a new simulation experiment that will
consider any village, town, city, or other region of interest by
loading an appropriate shapefile [16]. The computing hardware
used for this work was a dual 10-core 2.8 GHz Intel Xeon E5-
2680 v2 CPUs, 64 GB of RAM, and dual Xeon Phi 7120P
co-processors. System utilization rarely exceeded 18 GB even
when running simultaneous scenarios. The Java version used
was 1.8.0 212. Finally, MASON and GeoMason versions 19
and 1.5.2 were utilized respectively.

The simulations described here were initialized by individ-
ual ASCII-text parameter files at program start. For consis-
tency, we decided to populate our simulations of the GMU,
NOLA, and the smaller and larger synthetic urban compo-
nents with 1,000 agents each (cf. Fig. 5). For comparison,
an additional simulation run had the larger synthetic area
populated with 3,000 agents and NOLA with 5,000 agents.
A note here about our experiment’s data-grounding, empirical
validity, and simulation plausibility: The Nonprofit Knowledge
Works Data Center of New Orleans reported a fluctuating
population in NOLA of between 4,176 people (estimated 2,908
households) in the year 2000 down to 3,813 people (estimated
2,635 households) in 2010 [7]. Their empirical census counts
are comfortably bracketed by the population numbers we
simulated.

In all simulations, the agents were initialized at random
locations within their respective environments. In general, our
experimental protocol involved creating simulations that ran
for 15 simulated months. These were preset to halt and log

https://github.com/gmuggs/pol
https://osf.io/e24th/
https://github.com/gmuggs/pol/releases/tag/0.1


Fig. 5: Environments Populated with Agents. Clockwise from
Top Left: GMU, NOLA, Large and Small Synthetic Villages.

output data. As shown in Figure 6 that there is typically a
1 to 3 month ‘settling’ time when the simulation starts. This
is because the agent’s need to find their homes, work places,
and then agents start to develop dynamic social networks based
on temporal, spatial, and social needs. Thus, for comparative
purposes, it may be useful to think of this 15-month interval as
a 3-months ‘settling’ then 12-months experimental treatment.
However, for the purpose of abstract comparison, we also
chose to run GMU and NOLA with 1K-agents for a little over
10-years and 18-year, each, respectively. Table IV offers some
particulars regarding the run-time output from our simulations.

At our download site: https://github.com/gmuggs/pol, we
have provided run scripts, configuration files, fully compiled
Jar binaries, and four urban environments. The Java source for
the PoL simulation is located there as well. These files allow
one to re-run our simulation to reproduce the data.

There were multiple settings that were used with each of the
respective study areas. Table III specifies the run-time settings
in detail: the area simulated, the type and number of sites
simulated, the number of neighborhoods, and the count of
agents. In terms of the number of sites, we simulated five
types of sites: Schools, Pubs, Workplaces, Restaurants, and
Apartments. The actual number of each respective site type
and the number of neighborhoods simulated is the result of
an internal computational process indirectly derived from the
user choice of parameters but not directly accessible to the
user at setup time.

B. Results and Discussion

Table IV gives an overview of the generated output data
from the location-based social network simulation. It shows
the number of agent check-ins and the number of social links
attributed to each of the scenarios. We observe that the number

of check-ins increases, for all study areas, linear with the
number of agents. This is plausible, as the number of hours
per day that agents can spend to satisfy their needs and visit
sites is independent of other agents. However, we do see that
the number of social links increase super-linear in the number
of agents. This can be explained by more agents leading to
larger co-locations of agents, creating chances for each pair of
agents in the same co-location to become friends. We note that
the generated temporal social network may have more edges
than we have agent pairs. This is due to the temporal nature
of the network. It reports changes over time and as such a
single pair of agents can have multiple friends and unfriend
events. The number reported corresponds to the number of
new edges added to the temporal social network, regardless of
the duration of these events. The super-linear growth of the
social network also explains the super-linear run-time to create
each data set, ranging from less to one hour for the 1000 agent
instances to 10.5 hours for 5000 agents. Besides (i) number of
check-ins and (ii) social links, we also report (iii) the run-time
of each simulation and (iv) the resulting data size in Table
IV. It is interesting to see that even small simulations can
create sizable results given a longer duration. For example, the
smaller synthetic urban component that had the longest (221
month) simulation period produced a 5.5GB result data set.
However, the actual run-time of this simulation is shorter than
a simulation with more agents that had a shorter simulation
period, e.g., NOLA-5K - 15mo produced only a 2.3GB data
set and took 1233min to run vs. NOLA-1k - 221mo produced
a 5.5GB data set with a run-time of 774min. Increasing the
number of agents results in more complex data structures, e.g.,
social networks, which in turn increases the run-time of the
algorithms to process them at each step of the simulation.

Figure 6 shows the average number of friendships, over
simulation time measured in 5-minute steps, for all the 1K
networks. In all cases there is a three months (one month
is equal to 12 ∗ 24 ∗ 30 = 8640 steps) settling time during
which agents establish friendships (starting with an empty
social network). After this phase, friendship degrees fluctuate
around mean values for each simulation. We observe that the
two real networks exhibit a denser social network, due to a
more uneven distribution of agents, leading to large groups of
agents to co-locate at sites to become friends.

For a more detailed view of the resulting social network,
Figure 7 shows two visualizations of the social networks of
1K agents exemplary for the large synthetic network and
NOLA at the end of the 15 months simulation. These visu-
als show different types of network structures, such as two
to three large social communities for the synthetic TownL,
and one large community for NOLA. Since it is hard to
describe the evolution of a social network over time, we have
created a video for each of the four spatial areas showing
the social network evolution over the 129, 600 steps within
the 15 months simulation time. These videos can be found
at: https://mdm2020.joonseok.org, and show how the social
networks evolve from small isolated cliques into a large and
complex network showing different sub-structures. The video

https://github.com/gmuggs/pol
https://mdm2020.joonseok.org


TABLE III: Location-Based Social Network Simulation Settings.

Settings Maps Area # of Sites # of # of
(km2) Total School Recreation Workplace Restaurant Apartment Neighborhoods Agents

GMU-1K GMU 3.36 1,781 1 10 250 20 1,500 1 874
GMU-3K GMU 3.36 5,341 1 30 750 60 4,500 1 2,589
GMU-5K GMU 3.36 8,901 1 50 1250 100 7,500 1 4,648
NOLA-1K NOLA 6.49 1,781 2 10 250 20 1,500 2 863
NOLA-3K NOLA 6.49 5,342 2 30 750 60 4,500 2 2,720
NOLA-5K NOLA 6.49 8,904 4 50 1,250 100 7,500 2 4,728
TownS-1K Town Sm 58.41 1,788 4 12 252 20 1,500 4 876
TownS-3K Town Sm 58.41 5,348 4 32 752 60 4,500 4 2,645
TownS-5K Town Sm 58.41 8,908 4 52 1,252 100 7,500 4 4,349
TownL-1K Town Lg 126.20 1,789 6 12 253 18 1,500 6 853
TownL-3K Town Lg 126.20 5,346 6 30 750 60 4,500 6 2,550
TownL-5K Town Lg 126.20 8,904 6 48 1,248 102 7,500 6 4,216

TABLE IV: Data Sets Resulting from Location-Based Social
Network Simulation

Settings Period # of # of Runtime Size
(mo.) CheckIns Links (min) (MB)

GMU-1K 15 2,082,788 9,114,337 53 398
GMU-1K 121 16,210,909 75,747,439 372 3,235
GMU-3K 15 6,229,293 27,650,685 342 1,247
GMU-5K 15 11,189,377 54,250,961 1,099 2,389
NOLA-1K 15 2,099,867 9,160,459 52 400
NOLA-1K 221 29,597,885 141,425,945 774 5,502
NOLA-3K 15 6,886,573 27,284,999 362 1,282
NOLA-5K 15 12,007,415 48,710,881 1,233 2,284
TownS-1K 15 2,101,620 7,643,374 44 359
TownS-3K 15 6,454,785 26,364,057 319 1,227
TownS-5K 15 10,760,008 45,118,825 867 2,093
TownL-1K 15 2,030,688 6,418,473 49 320
TownL-3K 15 6,340,360 22,655,915 400 1,109
TownL-5K 15 10,548,956 40,431,579 942 1,937

also can help explain the patterns observed in Figure 6 in
which agents make friends during the day, while loosing some
at midnight at which time we periodically lower the weights
of the social network.

These videos also show, at each step of the simulation, the
distribution of the number of friends per agent, an exemplary
one is shown in Figure 8 for the small synthetic network
(TownS-1K). We observe that all case studies exhibit realistic
long-tail distributions of the number of friends: While most
agents have 5-25 friends, there are outliers having 50+ friends,
but also agents having only three or fewer friends. This
observation agrees well with a limit to the number of people
with whom one can maintain stable social relationships, e.g.,
Dunbar number [105]. In our simulated world such a limit
would exist at around 35 friends.

V. RESEARCH APPLICATIONS

Our location-based social network simulation directly ben-
efits many research endeavors concerned with location-based
social network study, including social link discovery, location
recommendation, community detection, ‘next-location’ predic-
tion, and potential ‘social-link’ prediction, among others. This
section provides a non-exhaustive brainstorming of applica-
tions of our data generator that can benefit the LBSN research
community.
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LBSN Benchmark Data. For a fair comparison of different
research methods, it is paramount to compare solutions on
the same data sets. As discussed in Section II-B, publicly
available data sets lack volume, temporal information and
ground-truth to reliably generalize knowledge that can be
mined from them. As an alternative to using these existing data
sets, the spatio-temporal database community has proposed
solutions to efficiently crawl data from LBSN data providers
[25]. However, this data is intellectual property of the respec-
tive LBSN providers, and publishing their data for research
benchmarks will violate their license agreements. As it is not
possible to crawl data from the past, researchers will ultimately
find themselves comparing their solutions on similar, but not
identical data sets crawled at different times. Our simulation
and generated data repository fills this gap. It allows different
research groups, at different times, to evaluate their algorithms



Fig. 8: Social Network Degree Distribution - TownS-1K

on the same data sets. Furthermore, our benchmark data is
extensible. If researchers choose to use our simulation to
generate a new data set for their particular application, then the
corresponding parameter file can be added to our repository.
However, for very large LBSN data sets, which may exceed
10GB of filesize, we may only provide the self-executable
simulation for local re-generation of data due to bandwidth
constraints.
Social Link Prediction. Traditionally, the quality of existing
link prediction methods is evaluated by removing a fraction of
links from the social network, and testing how well existing
solutions can predict these links using the remaining links
for training. A major problem with this approach is that
it is unclear how accurately the LBSN reflects the real-
world. Are there missing links? Are there false links? How
much correct signal per noise do these data sets yield? Are
existing solutions overfitting to this noise? Unfortunately, these
questions are challenging to answer, as there is no way to
validate whether two friends that are reported in any of the
real-world LBSN data sets (see Section II-B) are actual friends.
This is not the case in our simulation, all links in the social
network are accurate with no uncertainty. The simulation can
be easily extended to create noise, such as giving a chance for
ground truth friends to not represent themselves on the social
network, or for agents to fail to remove each other from the
social network after they unfriend each other. The resulting
obfuscated social network can than be used for link prediction,
and be evaluated against the ground truth social network.
Location Recommendation. To recommend locations, our
simulation allows to have agents rate sites (on a five “star”
scale - as illustrated in Figure 1). This rating is determined
by a deterministic function of the agents’ preferences and the
locations’ attributes. To leverage this simulation for location
recommendation, our simulation can be extended to obfuscate
ratings by random noise (of parameterizable degree). This
obfuscation can be deliberately biased, such as giving low
ratings a higher chance to appear, with medium ratings more
likely to be omitted. Such data would allow researchers to
experimentally compare existing methods and evaluate the
effect of bias between observed and ground truth ratings.
Such comparison enables us to answer the question of recom-
mendation systems’ generalizability to the whole population,
or if they overfit their models towards a sub-population of
individuals that use the recommendation service.
Community Detection. For the tasks of community detection

and social network clustering, we can extend the simulation
to impose circles of friends (i.e., strongly connected groups)
in our social network. Then, by observing co-locations from
the data, we can see which existing solutions are able to best
approximate the imposed ground truth social networks. This
data generation allows to obtain a ground-truth of communities
which can be used to evaluate the accuracy of community
detection algorithms.

VI. CONCLUSIONS

Our research has demonstrated plausible location-based
social simulation generating large-scale and high-fidelity
location-based social network (LBSN) data sets. Our Patterns
of Life discrete-event simulation addresses the need for sizable
LBSN data sets brought on by the lack of real-world data
sets that are arguably insufficient in terms of size and data
reliability. This current lack of data inhibits data-driven social
and data science research. Thus, our version of a location-
based social simulation tackles two of LBSN’s challenges
head-on: (i) plausibility, in terms of generating data that
exhibits realistic social behavior, to reason based on the data
about real-world phenomena, and (ii) scalability, to simulate
plausible numbers of agents over years of simulation time
and potentially generate LBSN data for entire generations.
Using a location-based social simulation provides for large
data sets that enable highly-detailed socio-temporal research
on LBSN, including link prediction, next-location prediction,
location recommendation, and community detection, etc. We
have made our simulation code, executable binaries, generated
data sets and visualizations available to the LBSN research
community. We hope that these tools will give new life and
vitality to this impactful research field. We hope that our
data sets can benefit many LBSN applications as exemplary
described in Section V by providing massive social network
data sets to social scientists and data scientists alike with
access to authoritative provenance of social and spatial ground-
truth in location-based social network research.
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