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ABSTRACT
In recent years, simulation techniques have been applied to inves-
tigate the spatio-temporal dynamics of crime. Researchers have
instantiated mobile offenders in agent-based simulations for theory
testing, experimenting with prevention strategies, and crime pre-
diction purposes, despite facing challenges due to the complex dy-
namics of crime and the lack of detailed information about offender
mobility. This paper presents an agent-based model to explore
offender mobility, focusing on the interplay between the agent’s
awareness space and activity nodes. To instantiate a realistic urban
environment, we use open data to simulate the urban structure and
location-based social networks data to represent activity nodes as
proxy for human activity. 18 mobility strategies have been tested,
combining search distance strategies (e.g. Lévy flight, inspired by
insights in human dynamics literature) and destination selection
strategies (enriched with Foursquare data). We analyze and com-
pare the different mobility strategies, and show the impact of using
activity nodes extracted from social networks to simulate offender
mobility. This agent-based model provides a basis for comparing of-
fender mobility in crime simulations by inferring offender mobility
in urban areas from real world data.
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1 INTRODUCTION
Criminology is a multidisciplinary research field that aims to ex-
plain, predict and prevent criminal behavior. Although criminals
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represent only a minority of the overall population, people come in
contact with criminal behavior (either by being criminal or by being
a victim), anytime anyplace. Crime is intrusive in everyday life. One
of the main research interests within Criminology is understanding
when crime will occur. The most influential theory that addresses
this challenge is the Routine Activity Theory (RAT) [12]. This the-
ory states that crime will occur when a motivated offender meets a
suitable target without a capable guardian present. Although this
theory has shown itself to be very useful in explaining various
criminological phenomena, it does not directly answer the question
where crime will occur (before it does). Based on RAT, the naïve
assumption would be that crime is evenly distributed over time
and space. However, it is known that the location(s) of criminal
behavior are typically not evenly distributed over urban areas [7].
So how can this uneven distribution be reproduced? Moreover, can
we simulate offender mobility patterns reproducing such distribu-
tions? In the current paper we address this question by using an
explicit agent-based model and generate a synthetic population of
offender agents navigating the urban environment.

Previous studies [8] have shown us that higher crime concen-
tration rates are found within the offender’s awareness space. An
awareness space is defined as the area in which the offender fre-
quently resides. The awareness space of an offender can be deter-
mined for example by his home, work space, recreation areas, etc.,
including the routes towards them. So, what appears to us is that
the area lying ’between’ frequently visited activity nodes should
be the field of operation of offenders. Hence, to study the spatio-
temporal dynamics of crime, we find that it is useful to examine the
mobility patterns of offenders in detail and those patterns in situ.
Due to the complex, spatially and temporally distributed nature of
these processes, an often-used approach is to employ Agent-Based
Modelling (ABM). Indeed, previous authors and researchers have
attempted to simulate crime patterns using ABM. Unfortunately,
many of these models were often based on highly incomplete data
(e.g. based solely on police records of known offenders) or were
not related to real world data at all [23], and combine uninformed
offender mobility strategies. As an alternative, this paper proposes
an ABM technology that describes offender mobility based on more
complete data, inferred from structural data (e.g. road network),
census data, and activity nodes from Location-Based Social Net-
works (LBSN). Note that we focus on mobility patterns and not on
the agent’ decision whether to offend. As a case study, our model
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is applied to the surface transportation network of New York City,
where a number of offender agent mobility strategies are compared
to each other. Parting from the notion, that crime is a legal definition
and does not necessarily define group behavior [33], the strategies
developed here are not only inspired by theories in criminology
but use human activity proxies gained from location-based social
networks, we infer home addresses from census data and activity
nodes from location-based social networks. The performance of
the model is assessed in terms of number of crimes covered and
distance traveled by the agents. We note that this model could
be applied to study social behavior other than crime by adapting
the performance measurement and by including other relevant
environmental factors.

This paper is organized as follows. Section 2 describes related
work and Section 3 introduces relevant notions for the purpose
of this simulation. Section 4 introduces the data included in the
simulation. The simulation model is presented in Section 5 and
the results are shown in Section 6. The paper concludes with a
discussion in Section 7.

2 RELATEDWORK
Criminology, the study of crime, involves many aspects, the in-
terrelationship of which may be mathematically complex. In the
context of related work, we believe that Computational Social Sci-
ence has begun to present itself as an important explanatory tool
for analyzing and predicting crime. We also note that the tech-
nologies of Computational Social Science have emerged as tools
with the potential to offer explanatory insight across many other
complex social issues [11]. But, we think this is particularly true
for Criminology. Across several fields and several decades, the
technologies of Computational Social Science have consistently
demonstrated interdisciplinary explanatory power through the use
of agent-based simulation (consider [3, 13, 34, 35]). Especially in
the field of Criminology, scientists are discovering the power of
agent-based simulation for various applications involving theory
testing [4, 6, 18, 23], testing of prevention strategies [5, 14, 15, 20]
and forecasting the development of crime [20, 24, 28], [23] provides
an overview for basic characteristics of crime simulation models). In
general, simulating crime patterns contributes to the understanding
of crime in a spatial environment. Crime simulations have mainly
been built in virtual (simulated) environments without the use of
real world data (e.g. [6]) to study the underlying mechanisms of
crime. However, including environmental data in a simulation al-
lows an instantiation to support a more realistic environment and
allows for a better transfer of the gained information (even though
it may complicate the user’s comprehension of underlying mech-
anisms). Indeed, existing simulation models have included street
network and land use data in combination with street robberies to
test RAT with basic offender agent moving between a set of static
and predefined activity nodes, and deciding whether to offend [19].
Others have considered street and subway network in combination
with burglary data and agents moving between connected nodes
at random and/or with heavy-tailed distribution waiting times (in-
spired by research in human mobility patterns), to test if crime
patterns can be reproduced [28]. Then too, some have looked at
street networks, household information (census and building data)

in combination with burglary data to test the use of ABM for crime
prediction with agents modeled in a complex manner using PECS
(Physical conditions, Emotional states, Cognitive capabilities and
Social status) [36]. These latter simulations consider frameworks
that model offender behavior and move between randomly assigned
home and work locations to build a cognitive map of passible tar-
gets within their awareness space [24, 37]. One of the common
elements characterizing all of the above detailed simulations is
their instantiation of offender behavior. All of these examples con-
centrate on the cognitive reasons for an offender to commit crime
by including agent individual characteristics, e.g. wealth measure
and target characteristics, and guardianship level of the possible
targets, leading to the offender’s decision whether to offend or not.
In contrast, the offender agent mobility characteristic are rather
neglected and based on simplified assumptions, with the exception
of [6] who have studied simple offender movement strategies lead-
ing to emergent crime patterns in a 2-D space by means of basic
mathematical and ABM models. Given all of the foregoing we ask:
Is it possible that by explicitly modeling movement offender direc-
tion choices, distances traveled, and by comparing random walks to
Lévy flight probability distribution might we discover that simple
mobility rules could be used together with other behavior rules to
reproduce crime patterns that arrive at a better predictive result? In
this sense, we argue that more realistic and generalizable offender
(spatial-temporal) mobility would improve crime simulations. Lévy
flight, being the name given to an actor’s set of seemingly random
spatial movements where those actual incremental displacements
are better represented by a heavy tailed probability distribution
[26].

Thus, in this paper, we consider the importance of studying the
basic simulation rules governing offender mobility, and build a sim-
ulation model to compare a large number of offender agent mobility
strategies on New York City’s (NYC) transportation network with
historic crime data of the city.

3 CRIMINAL OFFENDER MOBILITY
In RAT, routine activities are described as everyday activities which
tend to happen at the same locations such as home, work and
shopping areas. Offenders are thought to engage in routine activi-
ties, while research has shown that they are more prone to commit
crimes close the areas connecting the different activity nodes [29],i.e.
awareness space. Consequently, including offender agents’ home
location and some set of activity nodes in a crime simulation is
common practice. On one hand, some of the models rely on police
records for recorded home addresses as starting points to derive
their trajectories [25], while such a setup is limited to simulating re-
ported offenders and especially the ones for which home addresses
have been reported by the police. On the other hand, little effort has
been put into defining appropriate activity nodes and reproduced
realistic human (e.g. offender) spatial-temporal mobility patterns in
simulations. In the era of social media and crowdsourced/location-
based user data [13], patterns in human activity can be inferred
from openly available data. Human mobility patterns have been
intensively studied by means of GPS generated user data [17, 32]
as well as by means of LBSN, e.g. Foursquare [27]. Such research
has confirmed the high regularity of individual human movement
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Figure 1: Road length histogram.

and determined basic rules governing it, e.g. suggesting individ-
ual human travel distances should be modeled by means of Lévy
flight. Not only, can information about mobility patterns and rules
governing such movement be gained from LBSN, but information
from social media about the location attractiveness can be used as a
proxy to model the pull of certain locations within urban areas [30].
Moreover, activity nodes and city centers as a special case, have
been identified to attract offenders as well as the general population
[16].

4 DATA
The simulation described in the next section, includes sufficient
geographic data to simulate a virtual environment projected onto
New York City area using rectified coordinates (per NAD83 ) and
allowing measurement in feet. In particular, the simulation builds a
road network for NYC including 117,321 street segments collected
from NYC open data portal . The network provides the structure of
the road and public transportation system (including ferry lines),
upon which the agents may find their way. The length of the roads
approximates a Poisson distribution (see Figure 1), with a number
of outliers: 440 roads with a length of over 2000 feet (ft), hence
the x axis of the graph reaches 14000 ft. From NYC census data
, we have extracted population density information for each cen-
sus tract and have combined it with zoning information on NYC
buildings to identify residential areas. Furthermore, crime data has
also been obtained from the NYC open data portal, and includes
anonymized felony crimes at street segment level (projected to the
middle or the ends of the segment), which we projected to the road
network of the simulation. Figure 2 shows the counts of crime per
road in the NYC road network, with 17 roads having more than 10
crimes mapped (i.e. the x axis reaches 30 crimes per road). The crime
data includes information such as type of crime, date, time, etc.,
and the following types of crime: burglary, grand larceny, grand
larceny of motor vehicle, robbery, and felony assault. Rape and
murder incidents in this dataset have not been used for simulation
purpose due to low frequency (114 and 23 incidents, respectively).

Figure 2: Number of crimes per road histogram.

Figure 3: Number of venues per road histogram.

Crime data for 1 month (June 2015, arbitrary decision) has been
instantiated in the model, to obtain an up-to-date overview of crime
patterns for a time period that resulted in 8,494 crime incidents
mapped: 1,287 burglaries, 3,555 grand larcenies, 580 grand larcenies
of motor vehicle, 1,301 robberies, and 1,778 felony assaults. To
instantiate attractive locations, Foursquare data was collected from
the Foursquare API (as in [21, 22]), including information about
venues in the area of NYC: venue name, location, check-in counts
(accumulated over time), associated categories, etc. The set is com-
posed of 273,149 venues in the proximity of every incident from the
crime data set with over 122 million check-ins (from creation of the
venue in the platform until data collection in June 2016) associated
to the venues and categories ranging from Arts and Entertainment,
College and University, Events, Food, Nightlife Spot to Shop and
Service, etc. The venues have been mapped to the roads of the
NYC road network. Figure 3 shows the distribution of venue counts
per road. 54 roads contain over 60 venues with a maximum of 120
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venues per road (i.e. outliers in Figure 3). In the simulation model,
Foursquare venues are used as proxies for activity nodes (attractive
locations) and the check-ins are used as proxies for attractiveness
of the activity nodes.

5 SIMULATION MODEL
Inspired by previous ABMs simulating crime, in this paper we study
offender mobility by assessing the performance of different agent
mobility strategies in several scenarios emulating a large scale ur-
ban environment. In the simulation offender agents travel the road
network of an urban area which includes geo-located information
about historic crimes, moving from one spatial destination to an-
other, while memorizing the historic crimes they pass throughout
the simulation (i.e. as a proxy for measuring mobility performance).
The agents represent criminal offenders and travel from a start-
ing location to a number of activity nodes before returning to the
starting location. The goal of the simulation is that agents pass as
many new crimes as possible along the path. Each simulation step
(epoch) represents 1 day of the month and the model runs for 30
days, consistent with one-month crime data. The performance of
all agents is evaluated after the total period of 30 steps.

In more detail, to simulate offender mobility, the following as-
pects are relevant: (1) the optimal number of agents, influencing
the spatial coverage area; (2) the characteristics of the simulation
environment including a road network, spatial destinations repre-
senting activity nodes and geo-spatial reported crime data; (3) the
agents starting positions affecting the future possibilities, due to
path dependency; and (4) the movement preferences and strategies
of the agent. These points are formalized in the next section.

Using Mesa an agent-based modeling framework in Python, a
simplified version of New York City is instantiated in this model,
providing the structure of the road and public transportation net-
work (including ferry lines), zoning features for residential areas
and population density in these areas, as well as venues from
location-based social networks including popularity of each venue
as proxies for activity nodes (from Foursquare), and crime loca-
tions per type of crime (burglary, robbery, grand larceny, larceny
of motor vehicle, and felony assault ) for one month (June in 2015).

5.1 Basic Functionality Formalization
The variables in Table 1 are used in the following section to intro-
duce the model feature in detail. The simulation model instantiates
agents traveling from a starting position s to a destination position
x, before returning to position s at the end of the epoch (step). For
each step, n agents are instantiated, starting and ending at a location
s can be assumed. Agents are created and newly positioned at each
step. Over one model run (30 steps) the agents collect information
about the historic crimes c they pass by, including details about
the type of crime. As the agents embody unknown offenders, s
is inferred from residential areas weighted by population density
of each area. Agents are placed on the closest road within 80 feet
from a residential building. The residential building is chosen by
weighting each building according to the population density of the
census tract where it is situated. Within the same step, the agents
search for a destination x in distance r (10 %) to travel to, while
the value of r and the possibilities of x depend on the offenders’

Table 1: Variables in simulation model.

Level Name Explanation

Model n number of agents instantiated
rd road in NYC road network
c historic crime
d distance (length) of NYC road network
v activity node (i.e. Foursquare venue)

atrip average number of travel trips in a day

Agent s starting position
x travel destination
tc traveled crimes
td traveled distance
r search distance

xtrip number trips in a day

strategy. Strategies for choosing r and x are combined into different
simulation scenarios, detailed in section 5.2. The number of trips
xtrip an agent performs between several x, within the same epoch,
before returning to s is drawn from U(0,2*atrip), where atrip is the
statistical average number of trips performed by NYC population
(3.8 trips per day) [1], thus the number of x each agent visits per
step varies. The model is run for the different scenarios and their
performance is assessed using the results of tc (crimes traveled)
and tc (distances traveled)by the agent. In detail, the performance
is measured using several metrics: (1) comparing the coverage area,
ratio of distinct (i.e. new) tc by all agents within the simulation
(without multiple counts), over c (total histori crimes), for all crimes
and per crime type; (2) comparing an adaption of the Predictive
Accuracy Index (PAI) [10] over the scenarios. PAI is a standard
measure applied in criminology to evaluate performance of crime
prediction models, overcoming the challenges posed by sparseness
of point processes for performance measurement. For assessing
the performance of this model, the PAI index has been adapted as
follows:

adapted PAI =

Σ tc
Σ c
Σ td
Σ d

(1)

Adapted PAI shows the relationship between percentage of distinct
crimes passed by the agents and the percentage of distinct distances
traveled (i.e. length of new roads within the road network). The
higher the resulting index, the better the performance of the model.
The index is computed counting each different crime passed by
any agent only once. Additionally, the optimal number of agents
is determined by comparing the performance of the simulations
with different number of agents: 25, 50, 75, 100, 125 and 150. Note,
that no significance test will be conducted for comparing the per-
formance of different scenarios following the recommendations in
[38], advising against it for social simulations.

5.2 Mobility Scenario Strategies
Fifteen agent mobility scenarios are built by varying agent mobil-
ity strategies and by applying the knowledge exposed in section
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3. In particular, the Lévy flight distribution is built to mimic re-
alistic distance choices for the agent’s movement, while venues
from location-based social networks (including information on pop-
ularity of each venue) are derived as a proxy for activity nodes
accounting for their attractiveness for the general population. The
scenarios combine 3 options for search distance selection and 5
options for destination selection. Distance selection:

(1) The static distance allows agents to move only in one specific
distance, set to r=40,000 feet, the average trip length for
NYC’s population [1].

(2) The uniformly distributed distance builds upon the static
distance, uniformly drawing distances from a distribution
with average trip length for NYC’s population: R ∼ U (0, 2r )
so that E[R]= r.

(3) The Lévy flight distance draws distances from a power law
distribution using Lévy flight. The Lévy flight formula is
transformed to allow drawing distances from the probabil-
ity distribution within the boundaries of NYC, with β =0.6,
determined to be the optimal value for NYC [9]:

P(r ) ∼ r−(1+β ) → r ∼
1

P(r )
× e

1
1 + β (2)

Destination selection within selected distance:
(1) The first option is the most basic one, offering any random

road as a destination within distance r.
(2) The second destination choice is any random activity node

(Foursquare venue) within the distance r.
(3) The third destination choice accounts for the attractiveness

of the city center, allowing a choice of any road within dis-
tance r but weighting roads in the direction of the center of
NYC higher. The center score assigns values from 10 to 100
to the venues, decreasing in value with increasing distance
from the city center.

(4) The fourth option offers a choice of activity nodes weighted
by their popularity, determined using check-in counts from
Foursquare as follows:

P[x] =
check-in

Σ check-ins within r
(3)

(5) The fifth strategy offers a choice of activity nodes weighted
by their popularity and by their proximity to the center of
the city, using the center score.

P[x] =
check-in

Σ check-ins within r
× centerscore (4)

6 SIMULATION RESULTS
The simulation model described in the previous section was run
with the above presented scenarios to assess the performance of
offender agent mobility strategies. In this section, we present the
most interesting results over all simulated scenarios.

6.1 Performance for all types of crimes
In the first step we explored performance of the scenarios for all
types of crimes, see Figure 4 for destination strategies combined
with static distance, Figure 5 for destination strategies combined
with uniformly distributed distances, and Figure 6 for destination
strategies combined with Lévy flight distance. The figures show the

Figure 4: Adapted PAI (all crime types) for static search dis-
tance and number of agents.

performance of the adapted PAI measurement per simulation for
different number of agents in the scenarios n (25, 50, 75, 100, 125,
150). Across the three figures, the most basic destination strategy
offering a choice between random roads, underperforms compared
to more elaborate strategies. The remaining destination strategies
can be seen as special cases of activity nodes, and as such perform
similarly. Random venues weighted to the center of the city per-
form slightly better combined with static distance, popular venues
weighted to the center of the city perform slightly better combined
with uniformly distributed distances. In Figure 6, popular venues
weighted to the center of the city, popular venues and random
venues weighted to the center of the city perform best for different
agent count in the simulation, while popular venues prevail more
often. Thus the variance of destination strategies is slightly higher
for scenarios with Lévy flight distances compared to other scenar-
ios. A closer look at the best performing strategies (see Figure 7)
shows the highest performing destination strategy for each search
distance, from which we conclude, that the static search distance
performs slightly better than the uniformly distributed and the
Lévy flight distance, although the difference in performance is rela-
tively small. Throughout the simulation scenarios the performance
decays while the number of agents per simulation is increased, due
to the fact that an increasing number of agents also increases the
traveled distance, which normalizes the performance index. Thus,
we obtain a notion about the impact of increasing the number of
agents in each scenario, but do not gain information about the
optimal number of agents for this simulations. For more details, in
Figure 8 we show the percentage of crimes covered by all agents
in the best performing scenarios. The scenarios behave consistent
with the previous figures and cover between 41.04% - 74.09% of dis-
tinct crimes. The growth of the trend line for the different scenarios
starts to stabilize around 100 agents and static distance combined
with random venues weighted to the center of the city obtains the
highest percentages of covered crimes. This meaning that the num-
ber of new crimes traveled by the agents within the scenario starts
growing slower from 100 agents on. Thus, we assume the optimal
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Figure 5: Adapted PAI (all crime types) for uniformly dis-
tributed search distance.

Figure 6: Adapted PAI (all crime types) for Lévy flight dis-
tance.

number of agents for these scenarios to be approximated by 100
agents. Furthermore, we look into the roads traveled by 100 agents
for the best performing strategy and notice a nearly even spread of
the agents over the road network, with higher transit across main
roads. The Map in Figure 9 shows the roads traveled by 100 agents
after 30 epochs, with gradual size increase for traveled frequency.

6.2 Performance for single types of crimes
We now proceed to a deeper analysis of the overall best performing
scenario by looking into the performance for different crime types.
In this example scenario, grand larcenies and robberies achieve the
highest adapted PAI values. These crimes can be grouped into street
crimes, which perform even higher than all crime types combined.
In contrast, grand larceny of motor vehicle, burglary and felony
assault underperform compared to all crime types combined (see

Figure 7: Adapted PAI (all crime types) for best performing
search distance strategies.

Figure 8: Percentage of crimes covered for best performing
scenarios.

Figure 10). In terms of percentage covered by the different crime
types (see Table 2), the highest rate of crimes passed by at least
one agent is 77.97% and 76.88%, for robbery and grand larceny with
150 agents respectively. In contrast, the lowest rate is achieved by
felony assault with 33.24% for 25 agents.

7 DISCUSSION
Simulating criminal behavior can improve our understanding of the
mechanisms underlying crime and contribute to (1) more informed
testing of crime prevention strategies and (2) more accurate crime
predictions. While informed rules governing spatial movement
strategies of mobile agents is crucial for crime simulations. Build-
ing on previous work [6, 31], this paper extends the state of the art
by proposing and testing fifteen offender mobility scenarios com-
bining search distance and destination selection strategies. The goal
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Table 2: Percentage of crimes passed for crime types.

Number of agents All crimes Burglary Robbery Larceny Larceny Motor Assault

25 45.11% 39.78% 47.89% 49.23% 41.03% 37.06%
50 57.19% 51.05% 60.17% 61.10% 51.55% 49.38%
75 63.68% 57.50% 67.23% 66.92% 58.28% 55.96%
100 68.61% 62.55% 72.22% 71.87% 63.79% 60.29%
125 71.56% 65.73% 75.44% 74.57% 66.90% 63.16%
150 74.09% 68.07% 77.97% 76.88% 68.62% 66.25%

Figure 9:Map of NYC for best performing scenariowith trav-
eled roads marked in red.

Figure 10: Adapted PAI for static distance and random
venues weighted to the center of the city.

of the simulation was to find strategies governing offender mobility
from starting positions to daily activities (inspired by RAT) creating
the offenders’ awareness space (area between the traveled points).
According to literature in Criminology, offenders are known to
be prone to offend within their awareness space. For a more re-
alistic representation of the environment, the model instantiates

the NYC road network, population density and residential areas
within the road network, crimes mapped to the roads and venues
from Foursquare (including user check-ins per venue) as proxies for
activity nodes. To measure the performance of the different scenar-
ios we count historic crimes traveled by each offender within the
scenario (each crime only counted once) and build a performance
measure based on PAI (i.e. referred to as adapted PAI), account-
ing for the percentage of historic crimes passed and the distance
traveled by the agents. The first results compare the performance
of search distances strategies, suggesting, that the static search
distance performs slightly better than the uniformly distributed
and Lévy flight search distance. The similarity between the search
distance strategies confirms, the correct fine tuning of the param-
eters for the uniform and Lévy search distance, which have been
adapted to NYC and are in accordance with the average trip length
of NYC population (i.e. the static distance in the scenarios). Next,
the results for comparing the destination selection strategies show
that random roads as destination for offender mobility highly under-
perform compared to destinations representing activity nodes. The
different activity nodes (random venues, random venues weighted
to the city center, popular venues, and popular venues weighted
to the city center) can be seen as special cases accounting differ-
ently for activity nodes (i.e. venues) and show little variations in
performance when compared to each other. We conclude, that the
improvement in performance comes from including activity nodes
in the simulation and the variations make little difference, indeed
the overall best performing strategy combines static search distance
with random venue destinations weighted to the center of the city.
Furthermore, the range of adapted PAI values is within the lower
but acceptable rate compared to PAI index values in other work,
(e.g. between 1.2 and 3.37 for burglary prediction models) [2]. Note
that the values for adapted PAI achieved in this simulation are not
directly comparable to the original PAI applied in crime prediction
models. In this simulation we have counted crimes seen by agents
without accounting for a crime committing action, the original PAI
counts crime occurrences.

The optimal number of agents for this type of simulation can
be approximated by looking into the percentage of distinct crimes
covered by the scenarios with different number of agents within the
scenario. For the best performing scenario, we achieve 68.61% of dis-
tinct crimes covered with 100 agents, which we argue approximates
the optimal number of agents for this type of simulations. We note
that further simulations with higher number of agents could give
further insights into the optimal number of agents for these simu-
lations, while at this point the running times where prohibitive (10
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hours for a scenario with 150 agents). Furthermore, we look into the
performance of the best scenario for different type of crimes, and
show it performs best for street crimes (grand larceny and robbery),
better than for all types of crimes combined. In contrast, the perfor-
mance for grand larceny for motor vehicles, burglary and assault
underperform compared to all crime types combined. These results
are in line with research completed using Foursquare venues to im-
prove crime prediction models, showing that accounting for human
activity (e.g. Foursquare venues and check-ins) improves predictive
accuracy, this is so, especially for models predicting grand larceny
and robberies [22]. Thus, we confirm the consistency of our results
obtained using activity nodes.

The results achieved thorough this paper provide preliminary
insights into constructing more accurate rules governed offender
mobility for crime simulations. The integration of more realistic
offender mobility strategies informed with novel environmental
data can improve crime simulations, while this study was only
conducted for NYC and may not be generalizable to other cities,
especially not for those with basic structural differences. Future
work, could compare the performance of mobility strategies across
different cities and include a larger variety of activity nodes (e.g.
human activity derived from taxi flow data), as well asmore complex
destination choice mechanisms (e.g. choice of different destination
types at different times).

To understand the impact of improving offender mobility rules
on crime simulations, a crime simulation including agent decision
making whether to offend, such as [28] could be implemented
with and without the mobility behavior described in this paper.
The combination of mobility strategies with decisions whether to
offend along the travel path would provide further insights into the
utility of mobility strategies.

In addition to the importance of offender mobility within crime
simulation, this work highlights the impact of including environ-
mental data into crime simulations, and explores how LBSN data
can improve crime simulations by accounting for human activity.
We argue about the importance of including newly available rich
data sources to improve crime simulations especially for increasing
the transferability simulated results to the real world e.g. implica-
tions for police officers testing prevention strategies in-silico.
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