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Abstract

In recent years, simulation techniques have been applied to investigate the spatio-
temporal dynamics of crime. Researchers have instantiated mobile offenders in agent-based
simulations for theory testing, experimenting with crime prevention strategies, and explor-
ing crime prediction techniques, despite facing challenges due to the complex dynamics of
crime and the lack of detailed information about offender mobility. This paper presents
a simulation model to explore offender mobility, focusing on the interplay between the
agent’s awareness space and activity nodes. The simulation generates patterns of individ-
ual mobility aiming to cumulatively match crime patterns. To instantiate a realistic urban
environment, we use open data to simulate the urban structure, location-based social net-
works data to represent activity nodes as a proxy for human activity, and taxi trip data as
a proxy for human movement between regions of the city. We analyze and systematically
compare 35 different mobility strategies and demonstrate the benefits of using large-scale
human activity data to simulate offender mobility. The strategies combining taxi trip data
or historic crime data with popular activity nodes perform best compared to other strate-
gies, especially for robbery. Our approach provides a basis for building agent-based crime
simulations that infer offender mobility in urban areas from real-world data.∗

1. Introduction

Criminology is a multidisciplinary research field that aims to explain, predict, and prevent
criminal behavior. Although criminals only represent a minority of the overall population,

∗. A shorter preliminary version of this paper appeared as: Rosés, R., Kadar, C., Gerritsen, C., & Rouly, C.
(2018). Agent-based simulation of offender mobility: integrating activity nodes from location-based social
networks. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS) (pp. 804-812).
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people can come into contact with criminal behavior (either by being criminal or by being
a victim) anytime or anyplace. Crime can be an intrusive component in everyday life.

One of the main research interests within criminology is understanding when crime will
occur. The most influential theory addressing this challenge is the Routine Activity Theory
(RAT) (Cohen & Felson, 1979). This theory states that crime will occur when a motivated
offender meets a suitable target without a capable guardian present. Although this theory
has shown itself to be very useful in explaining various criminological phenomena, it does
not directly address the question of predicting where crime will occur. Based on RAT, the
näıve assumption would be that crime is evenly distributed over time and space. However, it
is known that the location(s) of criminal behavior are typically not evenly distributed over
urban areas (Brantingham & Brantingham, 1993). So how can this uneven distribution
be reproduced? Moreover, can we simulate offender mobility patterns reproducing such
distributions? What data sources are useful to model strategies for offender mobility and
for which types of crime do these perform best? In the current paper we address this
question by generating a synthetic population of offender agents and simulating the ways
in which they navigate the urban environment.

Previous studies (Brantingham & Brantingham, 1995) have shown us that higher crime
concentration rates are found within an offender’s awareness space. An awareness space is
defined as the area frequently occupied by an offender. The awareness space of an offender
can be determined, for example, by his home, workplace, recreation areas, etc., including
the routes that lead to them. It follows, therefore, that the area lying ‘between’ frequently
visited activity nodes should be the field of operation for offenders. Hence, to study the
spatio-temporal dynamics of crime, we find that it is useful to examine the mobility patterns
of offenders in detail and in situ. Due to the complex spatially and temporally distributed
nature of these processes, a frequently used approach is to employ the simulation technology
of Agent-Based Modeling (ABM). Indeed, previous authors and researchers have attempted
to simulate crime patterns using ABM. Unfortunately, many of these simulations utilized
highly incomplete data (e.g. based solely on police records of known offenders) or were
not related to real-world data at all (Liu & Eck, 2008). These simulations often contained
uninformed offender mobility strategies. As an alternative, this paper proposes an ABM,
with no interaction between the agents, that describes offender mobility based on more
complete, large-scale human activity data. This simulation is intended as a basis upon
which to build more robust ABMs simulating offenders reproducing crime patterns, and
will eventually be combined with cognitive models of offender decision making in order to
predict when/where crimes will be committed.

As a case study, our model is applied to the surface street network of New York City
(NYC), where a number of offender agent mobility strategies are compared to each other.
Departing from the notion that crime is a legal definition and does not necessarily de-
fine group behavior (Tappan, 1947), the strategies developed here are not only inspired by
theories in criminology but also use novel data as human activity proxies that could well
represent offenders. For example we’ve inferred home addresses from census data (land use
information and population density); venue location, venue type, and check-in counts from
location-based social networks (LBSN) as a proxy for activity nodes and human activity;
transitions within the city from taxi trip data as a proxy for travel patterns between city
areas; and historic crime location data as a proxy for attractive city areas. We note that
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no robustness analysis has been conducted for the various datasets inferring the proxies.
Consequently, our results must be interpreted with caution and may be regarded as prelim-
inary. The performance of the model is assessed in terms of: (1) the ratio of crimes covered
over distance traveled by the agents; and (2) crime locations covered within different areas
of the city. Finally, we note that this model could be applied to study social behavior other
than that of a criminal by adapting the performance measurement and by including other
relevant environmental factors.

This paper is organized as follows. Section 2 describes related work and Section 3
introduces relevant notions for the purpose of this simulation. Section 4 introduces the
data included in the simulation. The simulation model is presented in Section 5 and the
results are shown in Section 6. In Section 7 we end this paper with a conclusion and outlook.

2. Related Work

Criminology (the study of crime) involves many aspects, whose inter-relationship may be
mathematically complex. In the context of related work, we believe that computational
social science (CSS) (i.e., using computational approaches to study social phenomena) has
begun to present itself as an important explanatory tool for analyzing and predicting crime.
We also note that the technologies of CSS, such as simulations, have emerged as tools with
the potential to offer explanatory insight across many other complex social issues (Cioffi-
Revilla, 2010), but we believe these tools to be particularly relevant for criminology. Across
several fields and several decades, the technologies of CSS have consistently demonstrated
interdisciplinary explanatory power, especially through the use of agent-based simulation
(consider Axelrod, 1986; Crooks & Wise, 2013; Rouly, 2018; Schelling, 1969; Kohler, Kresl,
van West, Carr, & Wilshusen, 2000).

In the field of criminology, in particular, scientists are discovering the power of agent-
based simulation for various applications involving theory testing (Birks, Townsley, & Stew-
art, 2014; Brantingham & Tita, 2008; Groff, 2007a; Liu & Eck, 2008), testing of prevention
strategies (Bosse & Gerritsen, 2010; Devia & Weber, 2013; Dray, Mazerolle, Perez, & Ritter,
2008; Gunderson & Brown, 2000), and forecasting the development of crime (Gunderson
& Brown, 2000; Malleson, Heppenstall, & See, 2010; Peng & Kurland, 2014). Liu and Eck
(2008) provide an overview of the basic characteristics of crime simulation models, while
Groff, Johnson, and Thornton (2018) discuss practices, potentials, and shortcomings of ex-
isting ABM in relation to urban crime. In general, simulating crime patterns contributes
to the understanding of crime in a spatial environment. First generation crime simulations
were mainly built in synthetic environments without the use of real-world data (e.g. Brant-
ingham & Tita, 2008) to study the underlying mechanisms of crime. However, including
real data in a simulation allows an instantiation to support a more realistic environment and
allows for a better transfer of the gained information, even though it may complicate the
user’s comprehension of underlying mechanisms. Indeed, existing simulation models have
included street network and land use data, in combination with reported robbery data to
test RAT, with basic offender agents moving between a set of static and predefined activity
nodes, and deciding whether to offend (Groff, 2007b). Others have considered street and
subway networks in combination with burglary data and agents moving between connected
nodes at random and/or with heavy-tailed distribution waiting times (inspired by research
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on human mobility patterns) to test whether crime patterns can be reproduced (Peng &
Kurland, 2014). Then, too, some have looked at street networks and household information
(census and building data), in combination with reported burglary data, to gauge the util-
ity of ABM for predicting crime. There we see agents modeled in a complex manner using
PECS (Physical conditions, Emotional states, Cognitive capabilities, and Social status) (Ur-
ban & Schmidt, 2001). These latter simulations consider frameworks that model offender
behavior as a series of random home and work locations where the agents build a cognitive
map of possible targets within their awareness space (Malleson et al., 2010; Ward, Evans,
& Malleson, 2016). One of the common elements characterizing all of the aforementioned
simulations is their instantiation of offender behavior. All of these examples concentrate
on the cognitive reasons for an offender to commit a crime by including agent-individual
characteristics – e.g. wealth measure or target characteristics, and guardianship level of
the possible targets, that factor into the offender’s decision of whether to offend or not. In
contrast, the offender agent mobility characteristics are rather neglected and based on sim-
plified assumptions, with the exception of emergent crime patterns in a 2-D space by means
of basic mathematical models (without any data) (Brantingham & Tita, 2008) and the
Criminal Movement Model (CriMM) (Reid, Frank, Iwanski, Dabbaghian, & Brantingham,
2013). CriMM simulates travel patterns of known offenders from their residential address
towards assigned attractors (major shopping centers). Travel paths are simulated between
fixed residential and attractor locations, by means of the shortest path Dijkstra algorithm.
The study focuses on analyzing the proximity of crime locations to the simulated traveled
paths and identifies the potential of using major shopping centers as crime attractors to
simulate travel path destinations.

Given all of the above, we ask: Is it possible that by explicitly modeling the movement
of offenders, their direction choices, and distances traveled inferred from real-world open
data, and by comparing random walks to more realistic non-random human movement, we
might discover that a simple mobility rule could be used together with other behavior rules
to reproduce crime patterns that allow for a better predictive result? In contrast to more
traditional methods for generating a synthetic population representative of a city (Beckman,
Baggerly, & McKay, 1996; Adigaa, Agashea, Arifuzzamana, Barretta, Beckmana, Bisseta,
Chena, Chungbaeka, Eubanka, Guptaa, Khana, Kuhlmana, Mortveita, Nordberga, Riversa,
Stretza, Swarupa, Wilsona, & Xiea, 2015; Burger, Oz, Crooks, & Kennedy, 2017), we rely
on activity and mobility data to build strategies for offenders only, accounting for factors
relevant to crime. Moreover, researchers have already shown the potential of using novel
types of data in order to account for population at risk (also referred to as ambient popu-
lation) rather than residential population for the purpose of crime analysis and prediction.
Such data sources might include, for example, LBSN data (Kadar & Pletikosa, 2018; Wang,
Schoenebeck, Zheng, & Zhao, 2016a), mobile data (Bogomolov, Lepri, Staiano, Oliver,
Pianesi, & Pentland, 2014), or Twitter data (Gerber, 2014; Malleson & Andresen, 2014,
2015). We therefore argue that more realistic and generalizable offender (spatial-temporal)
mobility behavior, built using novel data sources, would improve crime simulations.

Thus, in this paper, we consider the importance of studying the basic rules governing
offender mobility by building a simulation model with a large number of offender-agent
mobility strategy variations using large-scale mobility data for NYC and subsequently assess
the value of those strategies using historic crime location patterns.
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3. Criminal Offender Mobility

In RAT, routine activities are described as everyday activities that tend to happen at the
same locations, such as home, work, and shopping areas. Offenders are thought to engage
in routine activities, while research has shown that they are more prone to commit crimes
close to the areas connecting the different activity nodes (Reid et al., 2013), i.e., within the
offender’s awareness space. Consequently, including offender agents’ home locations and
some set of activity nodes in a crime simulation is common practice. In such simulations
crime is mainly represented on segments of the street network, the natural domain of police
activities (Weisburd, Bushway, Lum, & Yang, 2004; Herrmann, 2013; Davies & Bishop,
2013; Kim, 2016; Rosser, Davies, Bowers, Johnson, & Cheng, 2016). On one hand, some of
the models rely on police records to instantiate home addresses as starting points for the
travel trajectories (Malleson, See, Evans, & Heppenstall, 2014). Such a setup is constrained
to simulating offenders known to the police and especially those for whom home addresses
have been reported. On the other hand, little effort has been devoted to defining appropri-
ate activity nodes and reproducing realistic human (e.g. offender) spatial-temporal mobility
patterns in simulations. In the era of social media and crowdsourced/location-based user
data (Crooks & Wise, 2013), patterns of human activity can be inferred from openly avail-
able data. Human mobility patterns have been intensively studied by means of GPS (Global
Positioning System) generated user data (Gonzalez, Hidalgo, & Barabasi, 2008; Song, Qu,
Blumm, & Barabasi, 2010), as well as by means of LBSN such as Foursquare (Noulas,
Scellato, Lambiotte, Pontil, & Mascolo, 2012; Hecht & Stephens, 2015), and even taxi trip
data (Tang, Liu, Wang, & Wang, 2015). Such research has confirmed the high regularity
of individual human movement and determined basic rules governing it, e.g. suggesting
individual human travel distances should be modeled by means of Lévy flight. This is the
name given to an actor’s set of seemingly random spatial movements where those actual
incremental displacements are better represented by a heavy-tailed probability distribution
(Mandelbrot, 1982), the probability of short displacements is high while the probability of
long displacements is low, hence modeling very well human mobility. Existing research has
shown, that not only can we gain information about human mobility patterns from LBSN,
but that this information is especially reliable within urban areas as opposed to rural areas
(Noulas, Scellato, Mascolo, & Pontil, 2011; Noulas et al., 2012; Cranshaw, Schwartz, Hong,
& Sadeh, 2012; Nguyen & Szymanski, 2012; Hecht & Stephens, 2015). Rules governing
human mobility behavior extracted from LBSN coincide with those studied for the general
population extracted from other methods such as GPS traces from mobile phones (Cheng,
Caverlee, Lee, & Sui, 2011). The advantage of LBSN data over cell phone data, is the
possibility to derive information regarding the context of the activities. For instance, in
Foursquare, users check into locations which are broadly categorized by type of activity
(Noulas, Mascolo, & Frias-Martinez, 2013; Cranshaw et al., 2012). Criminology has identi-
fied a link between types of activities available in an area of the city and the types of people
visiting this area, emphasizing the importance of attractive locations – facilities such as
shopping centers, malls, schools, restaurants, and bars– in generating and attracting crime
(Brantingham & Brantingham, 1995). Certain city areas can offer a greater number of
criminal opportunities simply due to a greater popularity among visitors, i.e., number of
possible victims (crime generators), while other areas attract offenders due to the avail-
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ability of easy targets related to the type of activities in the area, e.g. drunk visitors in
bar areas (crime attractors). Thus, information about the location type and popularity
can be used as a proxy to model the attractiveness for victims and offenders of specific
locations within urban areas (Reid et al., 2013). Far from being perfect, LBSN data present
some biases in terms of user characteristics and use cases. Existing research has raised
concerns about the representativeness of check-ins due to bias in the user groups and the
possibility of false check-ins (Zhang, Zhou, Zhao, Wang, Su, Metzger, Zheng, & Zhao, 2013;
Wang et al., 2016a). However, the research community relies on such data due to the ease
of accessibility and lack of more representative equivalent alternatives. Previous research
has used LBSN check-ins and venues as a proxy for human activity, furnishing insights
into the activities unfolding in different neighborhoods (Noulas et al., 2013). Researchers
have already identified potential and risks of using crowd-sourced data for crime analysis
(Malleson & Andresen, 2014, 2015) and have successfully used LBSN for crime prediction
models (Bogomolov et al., 2014; Al Boni & Gerber, 2016; Wang, Kifer, Graif, & Li, 2016b;
Yang, Heaney, Tonon, Wang, & Cudré-Mauroux, 2017; Kadar & Pletikosa, 2018). Other
data sources such as taxi trip data, can provide insights into frequent travel volume from
one region of the city into others. Existing research has used taxi trip data to study hu-
man mobility patterns (Liu, Kang, Gao, Xiao, & Tian, 2012a; Liu, Wang, Xiao, & Gao,
2012b), reveal city structure (Liu, Gong, Gong, & Liu, 2015), mine attractiveness of city
areas (Yue, Zhuang, Li, & Mao, 2009), and to infer crime rates at neighborhood level (Wang
et al., 2016a), among others. Travel patterns extracted from taxi trip data relate to the type
and intensity of activities occurring in different city areas, while areas of the city drawing
higher numbers of visitors act as crime attractors and generators, resulting in a higher num-
ber of crimes (Kinney, Brantingham, Wuschke, Kirk, & Brantingham, 2008). Even though
taxi trip data only represents a group of drivers within the network, the high penetration
of the service in NYC and the fact that it is commonly used for social and recreational
trips makes it a good proxy for this study (New York State Department of Transportation,
2018). Taxi trip data has successfully been used to inform crime prediction models (Wang
et al., 2016b; Kadar & Pletikosa, 2018) and can act as a proxy for transitions between city
areas. Moreover, activity nodes, and city centers as a special case, have been identified
as attracting offenders as well as the general population (Frank, Dabbaghian, Reid, Singh,
Cinnamon, & Brantingham, 2011).

4. Data Outline

NYC is home to over 8.5 million inhabitants and is the most densely populated major
city in the United States, with around 27,000 people per square mile. In 2015, the NYC
government launched the NYC Open Data platform to share the data produced and used by
the city’s government. The platform, which contains datasets concerning the inhabitants
and environment of the city, encourages the citizens and researchers to use the data for
value creation. The combination of a large urban population, an open data platform,
and widespread digitization of services (e.g. LBSN such as Foursquare) creates enormous
amounts of data that can be used to simulate the use of space and activities happening in
NYC. Indeed, NYC is the most popular city on Foursquare, an LBSN application in which
users check into places as part of their daily activities. Foursquare boasts almost 300,000
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venues and a total of 132 million check-ins in NYC (as of May 2016)2. In this paper we
simulate a simple geographic virtual environment of NYC using openly accessible data. The
data is projected onto the NYC area (projected coordinate per North American Datum of
1983 – NAD83), allowing measurement in feet. In this section we offer a detailed description
of the data which will build the simulation. We have gathered data to simulate a crime
pattern for June 2015. For the simulation the data is projected onto two different levels of
granularity, depending on the use case:

• street segments of the street network (see Figure 1), collected from the NYC Open
Data Portal in 2016. The NYC street network contains 117,320 street segments
[lat/long line coordinates] and provides the structure of the street and public trans-
portation system (including ferry lines). The dataset has been cleaned, removing
4,138 isolated street segments in total.

• census tracts (CT), a statistical unit subdividing counties [lat/long polygon coordi-
nates] defined by the United States Census Bureau3 for the New York region (see
Figure 2). In NYC there are 2,168 CTs with populations ranging from 3,000 to 4,000
and an average land area of 90 acres. The dataset has been cleaned to remove 6 CTs
containing only water and shorelines.

Figure 1: Street network in
NYC.

Figure 2: Census tracts in
NYC.

Figure 3: Crime pattern
heat map, June 2015.

Census data: From the NYC American Community Survey Public Use Microdata
Sample (ACS 2011-2015 5-year PUMS)4, we extracted census tract population total for
the period of 2011-2015 and calculated population density for each CT. The ACS PUMS
data gives information about the populations within the different census tracts. ACS 2016
PUMS data was not yet available when data for this study was collected; however, the overall
changes in population from one year to another are less then 0.5%. Land use information
from the PLUTO5 database (2016) is used to identify residential areas filtering for one- and
two-family buildings, multi family buildings, and mixed residential buildings. The PLUTO
data is collected on tax lot (a feature class part of the Department of Finance’s Digital Tax

2. https://www.4sqstat.com/

3. http://www.census.gov/

4. https://www.census.gov/programs-surveys/acs/data/pums.html

5. https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page
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Map) level, which identifies each parcel of the city. We combine this information to build a
map with residential street segments and resident population density, i.e., each residential
street segment is weighted by the population density of the CT it is in.

Crime data: The NYPD (New York Police Department) complaint data6 contains
felony crimes reported to the police. The dataset includes information such as type of
crime, date, time, and location [lat/long point coordinates at the middle or any end of a
street segment] for each crime. In terms of type of crime, our dataset includes burglary,
grand larceny, grand larceny of motor vehicle, robbery, and felony assault. Instances of rape
and murder have been excluded from the dataset due to low incidence rates (e.g. 1,209 and
357 incidents in 2015, respectively). Crime data is used for three different purposes: (1)
crime data from June 2014 to May 2015, aggregating crime counts per type of crime over
CT’s, is used within one strategy of the simulation to instantiate the attractiveness level
of a given CT for offenders within the last 12 months. This is useful because long-term
past crime data (e.g. at least 12 months) is a good indicator for future crime (Groff & La
Vigne, 2002) and is therefore often used for training crime prediction models. (2) Crime
data from June 2015, aggregating crime counts per type of crime over CT’s, is used for
model performance assessment (i.e., testing). (3) Crime data from June 2015 on segments
of the street network is used for model performance assessment (i.e., testing). Figure 3
shows the crime pattern in a heat map for all crimes in June 2015 and Table 1 details the
number of crimes per crime type and dataset. Note that while aggregating crime locations
at CT level, crimes on street segments traversing several CTs are counted twice, once in
each CT.

Crime type Count

June 2014-May 2015
Total crimes 102,966
Burglaries 15,897
Grand larcenies 43,301
Grand larcenies of motor vehicles 7,523
Robberies 16,413
Felony assaults 19,832

June 2015
Total crimes 8,503
Burglaries 1,287
Grand larcenies 3,555
Grand larcenies of motor vehicles 580
Robberies 1,303
Felony assaults 1,778

Table 1: Crime data counts.

LBSN data: Foursquare is an LBSN allowing online interaction between users based
on their physical location. Users share their real-time location and check into venues they
visit. Foursquare data was collected from the Foursquare API (Application Programming

6. https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Current-Year-To-Date-/

5uac-w243/data
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Interface)7 in June 2016, as in Kadar, Iria, and Pletikosa Cvijikj (2016) as well as Kadar,
Rosés Brüngger, and Pletikosa Cvijikj (2017). Figure 4 shows a heat map of the Foursquare
venue locations. The dataset contains information such as venue name, location [lat/long
point coordinates], check-in counts (accumulated over time), associated categories. The cat-
egorization of venues includes arts and entertainment, college and university, events, food,
nightlife, shops and services, traveling and transportation, etc. This dataset is used to simu-
late popularity of locations and to provide context of the activities at the specific locations.
It is composed of 236,294 venues in the proximity of every incident from the crime dataset
and includes over 119 million check-ins (from the creation of the venue in the platform until
the point of data collection date in June 2016) associated with venue categories (i.e., types).
The venues have been mapped to the streets of the NYC street network8. Table 2 shows the
count of different venue types and cumulative check-ins associated with each venue type.

Venue type Venue count Check-ins

Food 47,590 37,906,768
Outdoors & Recreation 18,011 16,397,944
Shop & Service 62,627 16,008,377
Professional & Other Places 64,055 14,118,615
Nightlife Spot 11,140 12,382,224
Travel & Transport 13,911 11,939,597
Arts & Entertainment 11,794 8,011,780
College & University 7,082 3,094,084
Event 84 20,386

Total 236,294 119,879,775

Table 2: Foursquare venue types.

Taxi trip data: The NYC Open Data Platform offers very large sets of taxi trip
data. We combine Yellow Taxi Trip Data9 and Green Taxi Trip Data10 into one dataset
for a one-year time period (July 2014 to June 2015). Both yellow and green taxi services
pick up passengers hailing from the street and cover all of NYC, while serving different
city areas (i.e., pick-up locations in different areas). Yellow taxis are concentrated around
Manhattan as wel as the JFK International Airport and LaGuardia Airport; green taxis
offer their services above 110th Street in Manhattan and in the outer boroughs of NYC. The
dataset includes pick-up and drop-off dates/times/locations [lat/long point coordinates],
trip distances, fares, rate types, payment types, and driver-reported passenger counts. For
this study we use pick-up and drop-off locations and project them on CTs, creating a
new dataset pairing CTs with each other and weighting by total number of pick-ups and
drop-offs. Thus, the dataset reveals information about the connectivity and popularity of
transitions from one CT to any other CT in the city. The dataset is composed of over 248
million taxi trips within 12 months (July 2014 to June 2015). Figure 5 shows the counts of
taxi trip pick-ups and Figure 6 shows the counts of taxi trip drop-offs at CT level.

7. http://www.foursquare.com/

8. 8,254 venues where not within 80 feet of a street segment, and therefore not included in this study
9. https://data.cityofnewyork.us/Transportation/2014-Yellow-Taxi-Trip-Data/gn7m-em8n

10. https://data.cityofnewyork.us/Transportation/2014-Green-Taxi-Trip-Data/2np7-5jsg
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Figure 4: Foursquare
venues heat map.

Figure 5: Taxi trip pickup
locations count on CT
level.

Figure 6: Taxi trip drop-
off locations count on CT
level.

Table 3 summarizes the data described in this section and shows how it is used in the
simulation model described in the next section.

Layer Representation Use

Street network street network travel paths
Census data residential areas home locations, starting and ending position
Foursquare activity nodes and activity activity node locations and popularity, destinations
Taxi trip data transition trends between CTs destination area (i.e., CT) popularity
Crime data attractiveness of CT destination area (i.e., CT) popularity

Table 3: Use of data layers within the simulation.

5. The Simulation Model

Inspired by previous ABMs simulating crime, we built a simulation model to explore several
scenarios of offender mobility strategies. The model aims to generate RAT-based patterns of
individual offender movement which cumulatively match the spatial distribution of historic
crime locations. Due to the fact that this model focuses only on mobility strategies, the
offender agents engage in movement throughout the street network, traveling past locations
with historic crime points but without engaging in any criminal action or interaction within
this simulation. The number of historic crime locations passed by the agents is used for
model performance assessment only. In order to simulate offender mobility, the following
aspects are relevant: (1) the optimal number of agents influencing the spatial coverage area;
(2) the characteristics of the simulation model environment, including a street network,
spatial destinations representing activity nodes, and geo-spatial historic crime data; (3) the
agents, starting positions affecting the future possibilities due to path dependency; and
(4) the movement preferences and strategies of the agents. These points are formalized in
Section 5.1.

Using Mesa, an agent-based modeling framework in Python (Masad & Kazil, 2015), a
simplified version of NYC is instantiated in this model, providing the structure of the street
network, zoning features for residential areas with population densities, venues with their
popularity from location-based social networks, aggregated taxi trip data, and aggregated
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crime data including crime locations per type of crime (burglary, robbery, grand larceny,
larceny of motor vehicles, and felony assault)11.

5.1 Basic Functionality Formalization

The variables in Table 4 are used in the following subsection to introduce the model in detail.
The simulation emulates a large-scale urban environment with offender agents traveling the
street network. Each simulation step (epoch) represents one day of the month (24 hours)
and the model runs for 30 days, consistent with one-month crime data emulated in the
environment. The performance of all agents within each scenario is evaluated after the
total period of 30 days.

Model var. Explanation Agent var. Explanation

n number of agents instantiated s starting position
rd street in NYC street network x travel destination
c historic crime locations tc traveled crime location
d distance (length) of NYC street network td traveled distance
v activity node (i.e., Foursquare venue) r radius distance

atrip average number of travel trips in a day a search area
xtrip number of trips in a day

Table 4: Variables in the simulation model.

In detail, the instantiated agents are created and newly positioned at each step (i.e., day)
to reduce path dependency bias. They start and end each step at a location s, representing
the home location. As the agents instantiate anonymous offenders, they are placed on
the closest street to a residential building. s is inferred from residential areas weighted
by the population density of each area. The population density of each CT influences the
probability of each residential building to be chosen as an s; higher density corresponds to
higher probability.

Within each step, the offender agents travel from a starting position s to several des-
tination positions x. Each agent draws the number of trips to destinations atrip for the
current day (i.e., step) from U(0, 2× atrip), while atrip is the statistical average number of
trips undertaken by the NYC population (3.8 trips per day) (New York State Department
of Transportation, 2012). For each travel trip, an agent chooses a destination area a and a
destination x within a. The choice of a and x depends on the offenders’ mobility strategy,
detailed in Section 5.2. A scenario is simulated for each possible offender mobility strategy.
The agents travel using Dijkstra’s shortest path algorithm12, taking into account street
segment length. Over one model run (30 steps), each agent collects information about the
historic crime locations c encountered along the traveled paths tc and the distance traveled
td. The performance of the scenarios is assessed using the cumulative tc and td over all
agents within a simulation (see Section 5.3 for more details). The agents’ behavior is inde-
pendent from other agents and starts at a new location every day, thus there is no difference
between running the simulation multiple times or running it for a high number of agents

11. The python and sql code for this simulation is available on GitHub: https://github.com/rraquel/

ABM-crime-mobility-NYC

12. https://networkx.github.io/documentation/stable/reference/algorithms/shortest_paths.html

11



Rosés, Kadar, Gerritsen, & Rouly

within the simulation. Additionally, the adequate (Swarup, 2019) number of runs or agents
within each scenario is unknown. Drawing upon the insights from our previous preliminary
work (Rosés, Kadar, Gerritsen, & Rouly, 2018), we decide to fix the running time (30 steps)
and instantiate 1,000 agents within each simulation, a largely sufficient number of agents to
cover all historic crime locations (multiple times). This results in 30,000 individual agents
simulated for each scenario. To assess the performance of the model, and to find the ade-
quate number of agents within the simulation, we evaluate the results for varying numbers
of agents, meaning that we only account for the desired number of agents, only taking into
account the paths of the first desired number of agents for each simulated day within a
model run.

5.2 Mobility Scenario Strategies

We build 35 mobility scenarios by combining 5 options for area-selection strategies and 7
options for destination-selection strategies. For each travel trip, agents first choose an area
to travel to, followed by a concrete location within the same area. The area can either be
a radial distance or a CT, whereas the concrete destination location is always on a street
segment (i.e., Foursquare venues are mapped to street segments). In line with the knowl-
edge described in Section 3, the strategies are detailed as follows:

Area selection:

1. Static: The static distance allows agents to move only within a specific distance
from their current location, resulting in a radial area a. The static distance is set
to a radius of 40,000 feet with a 5% boundary, inspired by the average trip length
for NYC’s population (New York State Department of Transportation, 2012), and
represents a baseline strategy.

2. Uniform: The uniformly distributed distance builds upon the static distance, uni-
formly drawing distances from a distribution with an average trip length for NYC’s
population: R ∼ U(0, 2r) so that E[R] = r with a 5% boundary; this results in a
radial area a. Consequently, each traveled distance varies, representing an improved
baseline.

3. Power: The Lévy flight distance draws distances from a power law distribution using
Lévy flight. Lévy flight distribution is introduced to mimic realistic distance choices.
The Lévy flight formula is transformed to allow for the drawing of distances (r) from
the probability distribution within NYC, with β =0.6, determined to be the optimal
value for NYC (Brockmann, Hufnagel, & Geisel, 2006), and an extra boundary of 5%,
resulting in a radial area a:

P (r) ∼ r−(1+β) → r ∼ 1

P (r)
× e

1
1+β (1)

4. Taxi: The taxi distance provides agents with a list of destination areas corresponding
to census tracts weighted by the frequency of trips between the CT of origin and
any other census tract in NYC. Census tracts with higher transition frequencies are
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weighted higher. The aggregated taxi trip data is included as a proxy for more realistic
travel preferences.

5. Crime: The crime distance provides agents with a list of destination areas corre-
sponding to CTs weighted by crime location counts (all crimes combined) and by
their distance to the starting position s. CTs with higher historic crime location
counts and closer to the CT of origin are weighted higher. The aggregated historic
crime data is included as a proxy for the general attractiveness of areas in line with
previous crime locations. As stated earlier, historic crime is a good indicator for future
crime.

Destination selection within area a :

1. Random streets: The first option is the most basic one, offering any random street
of the street network as a destination.

2. Random venues: The second option offers a choice of any random activity node
(i.e., Foursquare venue) as a destination.

3. Random venues-center: The third destination option accounts for the attractive-
ness of the city center using a center score, allowing a choice of any activity node,
and weighting activity nodes in proximity of the center of NYC higher. The center
score assigns values from 10 to 100 to the venues, decreasing in value with increasing
distance from the city center.

4. Random venues-type: The fourth option offers any activity node weighing nodes
with more popular activity types higher. The popularity of the activity type at the
node is determined by the total check-ins count per venue category in all of NYC.

5. Popular venues: The fifth strategy offers a choice of activity nodes weighted by pop-
ularity (determined using check-in counts from Foursquare). The higher the number
of check-ins at the venue, the higher the weight of the activity node.

P [x] =
check-ins

Σ check-ins within r
(2)

6. Popular venues-center: The sixth strategy offers a choice of activity nodes weighted
by popularity (determined using check-in counts from Foursquare) and by proximity
to the center of the city, using the center score (described in item 3 of this section).
The higher the number of check-ins and the closer the venue is to the city center, the
higher the weight of the activity node.

P [x] =
check-ins

Σ check-ins within r
× center score (3)

7. Popular venues-type: The seventh strategy offers a choice of activity nodes weighted
by popularity (determined by check-in counts from Foursquare) and by popularity of
the activity type ( total check-ins count per venue category in all of NYC). The higher
the number of check-ins at the venue and the higher the number of check-ins for the
activity type in all of NYC, the higher the weight of the activity node.

P [x] =
check-ins

Σ check-ins within r
× Σcheck-ins category

Σ check-ins total
(4)
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5.3 Performance Assessment

The cumulative number of crimes and distance traveled over the agents of each simulated
scenario is used to assess the performance of each scenario. We develop two metrics at
different levels of granularity to assess the performance of the simulated scenarios. First,
we develop a metric for assessing the performance of the scenarios at street segment level.
We adopt the Predictive Accuracy Index (PAI) (Chainey, Tompson, & Uhlig, 2008) and
adapt it for use within the context of our simulations. PAI is a standard measure applied in
criminology to evaluate performance of crime prediction models, overcoming the challenges
posed by sparseness of point processes for performance measurement. The original PAI,
was specifically developed to assess the performance of models predicting crime hotspots
(i.e., areas of a map with high crime intensity). The equation considers hit rate of crimes
against prediction area with respect to the total area. See Equation (5), where HitRate is
the percentage of predicted crimes within the prediction area and AreaPercentage is the
prediction area in relation to the whole study area. The value of PAI is 1, if the model
predicts all crimes in the whole study area.

PAI =
HitRate

AreaPercentage
(5)

Inspired by PAI, in order to assess the performance of the simulations in this study,
we evaluate the relationship between two ratios: (1) distinct crime locations traveled (each
crime only counted once) over the total crime locations as TraveledCrimesRatio and; (2) the
distinct distances traveled (i.e., length of streets within the street network, only counted
once) by the agents over the travel space (i.e., total length of the street segments) as
TraveledDistanceRatio. We have therefore adapted the PAI index as in Equation (6). The
resulting index for adapted PAI shows better model performance if the resulting value is
higher, meaning that the simulation has covered a higher number of crime locations per
distance.

adapted PAI =
TraveledCrimesRatio

TraveledDistanceRatio
=

Σ tc
Σ c
Σ td
Σ d

(6)

Using the adapted PAI measure, we choose a limited number of successful scenarios and
conduct further analysis to assess their performance at CT level. We compare the coverage
area (crime locations along the paths traveled by the agents) of different CTs within one
scenario, obtaining information about whether the agents cover crime locations equally
across various CTs of the city.

Furthermore, the optimal number of agents within the simulation is determined by
comparing the performance of the simulations when run with different numbers of agents,
ranging from 5 to 1,000. Note that no significance test was conducted for comparing the
performance of different scenarios following the recommendations of White, Rassweiler,
Samhouri, Stier, and White (2014), who advised against it for social simulations.

6. Simulation Results

For the purpose of assessing the performance of various offender mobility strategies described
in the previous section, we ran multiple simulations, one for each different scenario with
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the maximum number of agents (i.e., 1,000 agents). In the following subsections: (1) we
highlight the most interesting results over all simulated scenarios for all types of crimes and
choose the two best performing strategies; (2) we engage in a deeper analysis of the scenario
performance for different types of crimes; and (3) we assess the spatial performance of the
best strategy at the CT level.

6.1 Scenario Performance for All Types of Crimes

We explore the performance of the scenarios at street segment level for all types of crimes.
Each of the 35 scenarios is evaluated in terms of adapted PAI for a varying number of
simulated agents n (5, 25, 50, 75, 100, 125, 150,..., 1,000). To ease readability of the overall
result, we’ve grouped the adapted PAI results into five graphs, one for each area strategy
in combination with the various destination strategies (see Table 5).

Area strategy Destination strategy Figure

Static area strategy all destination strategies Figure 7
Uniformly distributed area strategy Figure 8
Power-law distributed area strategy Figure 9
Taxi area strategy Figure 10
Crime area strategy Figure 11

Table 5: Variables in the simulation model.

A preliminary visual inspection of the resulting graphs reveals the consistent under-
performance of the most basic destination strategy (offering a choice between random
streets) compared to more elaborate destination strategies across all five figures. The re-
maining destination strategies perform rather similarly and can be split into the following
broad categories: (1) proxies for activity nodes (random venues, random venues-center,
random venues-type) and (2) proxies for human activity at these nodes (popular venues,
popular venues-center, popular venues-type), with the latter showing overall slightly higher
adapted PAI values throughout Figures 7-11.

For a thorough investigation of the overall performance of each scenario, we applied a
holistic measure. We considered the area under the curve (AUC) for each result line in
the graphs depicted in Table 5 and show the resulting values in Table 6. This allowed
us to compare the average performance of each scenario in terms of adapted PAI over a
varying number of agents. Overall, combining static area strategy with popular venues-
center performs best, showing an AUC value corresponding to an average adapted PAI of
1.35. The scenarios combining static area with popular venues-type (1.34 average adapted
PAI) and static area with popular venues (1.33 average adapted PAI) followed as second
and third best performing scenarios overall. Conversely, power-law, uniform random, and
static area selection strategies, each combined with random streets, perform worst, with
average adapted PAI values between 1.15 and 1.18.

Defining the most basic strategy (static area combined with random streets destination)
as the baseline, we compare the relative AUC improvement of each scenario while grouping
destination selection strategies by area selection strategies. In Table 6, we conclude that
a static area selection strategy combined with a popular venues-center strategy performs
best, yielding a 14.31% improvement over the baseline. This is followed by crime area
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Figure 7: Adapted PAI (all crime types) for
static distance and number of agents.

Figure 8: Adapted PAI (all crime types) for uni-
form distance.

Figure 9: Adapted PAI (all crime types) for
power distance.

Figure 10: Adapted PAI (all crime types) for taxi
area.

Figure 11: Adapted PAI (all crime types) for
crime area.

Figure 12: Crime locations coverage for the 5
best performing scenarios.
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Distance Destination AUC

Overall Avg. adapted PAI Improvement

Static Random streets 1,172.38 1.18 0.00%
Random venues 1,299.69 1.31 10.86%
Random venues-center 1,322.00 1.33 12.76%
Random venues-type 1,296.07 1.30 10.55%
Popular venues 1,325.57 1.33 13.07%
Popular venues-center 1,340.10 1.35 14.31%
Popular venues-type 1,328.54 1.34 13.32%

Uniform Random streets 1,156.94 1.16 -1.32%
Random venues 1,256.75 1.26 7.20%
Random venues-center 1,259.40 1.27 7.42%
Random venues-type 1,251.11 1.26 6.72%
Popular venues 1,274.25 1.28 8.69%
Popular venues-center 1,278.21 1.28 9.03%
Popular venues-type 1,273.78 1.28 8.65%

Power Random streets 1,144.43 1.15 -2.38%
Random venues 1,259.58 1.27 7.44%
Random venues-center 1,271.79 1.28 8.48%
Random venues-type 1,246.03 1.25 6.28%
Popular venues 1,280.04 1.29 9.18%
Popular venues-center 1,286.73 1.29 9.75%
Popular venues-type 1,278.11 1.28 9.02%

Taxi Random streets 1,225.00 1.23 4.49%
Random venues 1,260.04 1.27 7.48%
Random venues-center 1,254.06 1.26 6.97%
Random venues-type 1,257.54 1.26 7.26%
Popular venues 1,283.25 1.29 9.46%
Popular venues-center 1,279.06 1.29 9.10%
Popular venues-type 1,275.94 1.28 8.83%

Crime Random streets 1,278.31 1.28 9.04%
Random venues 1,305.52 1.31 11.36%
Random venues-center 1,304.03 1.31 11.23%
Random venues-type 1,306.97 1.31 11.48%
Popular venues 1,311.59 1.32 11.87%
Popular venues-center 1,317.35 1.32 12.37%
Popular venues-type 1,320.49 1.32 12.63%

Table 6: Overall performance comparison for all scenarios, improvement over static combined with random
streets.
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strategy combined with popular venues-type, which exhibits an improvement of 12.63%.
Using a power-law strategy combined with popular venues-center results in only a 9.75%
improvement. Furthermore, when empirical taxi trip data is combined with a simple popular
venues strategy, a 9.46% improvement is seen. Finally, a uniform random area strategy
combined with a popular venues-center strategy delivers an improvement of only a 9.03%.
However, a pattern emerges as the special cases for popular venues perform best within each
of the area strategies. Additionally, the difference in performance among popular venues,
popular venues-center, and popular venues-type is very small, within each scenario grouped
by area strategies.

From the previous analysis, we observed the best performing scenarios for each area
selection strategy and used this information to analyze the efficiency of those scenarios
by looking into the percentage of crime locations covered within each simulated scenario
(see Figure 12). We define efficiency as achieving the highest adapted PAI value while
covering a reasonable proportion of the crime locations within a simulation and requiring
the lowest number of agents (percentage of crime locations along the agents traveled paths).
For covering 80% and 90% of crime locations, we determined the adapted PAI value and
number of agents (see Table 7). To cover 80% of total crime locations, the adapted PAI
values vary between 1.33 and 1.44, while the highest adapted PAI value is achieved by taxi
area combined with popular venues, with only 125 agents within the simulated scenario. In
turn, to cover 90% of the total crime locations, the values for adapted PAI vary between
1.25 and 1.29; the highest value is achieved by the scenario combining crime with popular
venues-type for 475 agents, noting that taxi combined with popular venues achieves a very
similar adapted PAI value (1.28) for only 325 simulated agents. These results give us an
idea about the number of agents needed to simulate each scenario, depending on the desired
coverage of crime locations.

Distance Destination 80% crime locations coverage 90% crime locations coverage

n Adapted PAI n Adapted PAI

Static Popular venues-center 275 1.38 775 1.25
Uniform Popular venues-center 200 1.35 575 1.23
Power Popular venues-center 250 1.33 675 1.22
Taxi Popular venues 125 1.44 325 1.28
Crime Popular venues-type 175 1.42 475 1.29

Table 7: Efficiency and coverage of crime locations within the simulation.

6.2 Performance for Single Types of Crimes

In this subsection, we engage in a deeper analysis of the two best performing strategies
determined by the analysis conducted so far. In particular, we look into the performance
of taxi area combined with popular venues and crime combined with popular venues-type,
over adapted PAI by varying the number of agents for different types of crime: burglary,
robbery, grand larceny, larceny of motor vehicle, and felony assault. See Figure 13 for
taxi combined with popular venues and Figure 14 for crime combined with popular venues-
type. A visual inspection of the graphs reveals a clear over-performance of the scenarios for
robbery, followed by grand larceny, which performs similarly to all types of crimes combined.

18



Simulating Offender Mobility

Both scenarios under-perform for the remaining crime types (burglary, grand larceny of
motor vehicle, and felony assault) as compared to all types of crimes aggregated. We note
that both over-performing crime types can be grouped into a larger category referred to
as ”street crimes”. Consistent with the analysis in the previous subsection, we show in
Table 8 that there is value in the application of a holistic measure for assessing the overall
performance of the different crime type within the scenarios. We calculate AUC and the
corresponding average PAI over varying numbers of agents, as well as the percentage of
AUC improvement over the baseline (all crimes combined). This results in two baselines,
one for each scenario.

Figure 13: Adapted PAI for different types of crimes
in Taxi & Popular venues.

Figure 14: Adapted PAI for different types of crimes
in Crime & Popular venues-type.

Scenario Crime type AUC

Overall Avg. adapted PAI Improvement

Taxi & Popular venues All crimes 1,320.49 1.33 0.00%
Burglary 1,232.26 1.24 -6.68%
Robbery 1,378.38 1.39 4.38%
Grand larceny 1,318.86 1.33 -0.12%
Grand larceny of motor vehicle 1,251.42 1.26 -5.23%
Felony assault 1,259.67 1.33 -4.61%

Crime & Popular venues-type All crimes 1,283.25 1.29 0.00%
Burglary 1,208.46 1.21 -5.83%
Robbery 1,316.73 1.32 2.61%
Grand larceny 1,284.22 1.29 0.08%
Grand larceny of motor vehicle 1,210.07 1.22 -5.70%
Felony assault 1,231.87 1.24 -4.00%

Table 8: Performance comparison for best scenarios and all types of crime.

The highest AUC value is achieved by robbery within the taxi combined with popular
venues scenario, corresponding to an average adapted PAI of 1.39. This is followed by grand
larceny within the same scenario (1.33 average adapted PAI) and by robbery in crime com-
bined with popular venues-type (1.32 average adapted PAI). In terms of improvement over
the baseline, for the scenario combining taxi with popular venues, robbery shows the high-
est improvement (4.38%), followed by grand larceny (-0.12%). Both slightly under-perform
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compared to all types of crimes combined. Likewise, for the scenario that combines crime
areas with popular venues-type, robbery shows the highest improvement (2.61%), followed
by grand larceny (0.08%), which slightly over-performs when compared to the baseline. The
results for both scenarios are highly consistent. Thus, both strategy combinations perform
best for robbery.

Again, we analyze the efficiency of the best performing crime types within each scenario,
covering 80% and 90% of total crime locations within the simulation. The results of this
are shown in Table 9. For 80% coverage of crime locations, the adapted PAI values vary
between 1.45 and 1.63, and for 90% coverage, the adapted PAI values vary between 1.28
and 1.41. By comparing the adapted PAI values for all crime types combined (see previous
section), simulations run to account only for robbery and grand larceny revealed themselves
to be more efficient in terms of adapted PAI. The highest adapted PAI value was achieved
by robbery within the scenario combining crime with popular venues-type for 80% and for
90% coverage, with respective adapted PAI values of 1.63 and 1.41 for 100 and 300 agents
within the simulation. Both scenarios perform slightly better for robbery than for grand
larceny. This strongly indicates the usefulness of simulating specific scenarios for street
crimes rather than for other types of criminal behaviors.

Scenario Crime type 80% crime locations coverage 90% crime locations coverage

n Adapted PAI n Adapted PAI

Taxi & Popular venues Robbery 100 1.55 225 1.38
Grand larceny 125 1.45 325 1.28

Crime & Popular venues-type Robbery 100 1.63 300 1.41
Grand larceny 150 1.45 500 1.28

Table 9: Efficiency and coverage of crime locations per type of crime for the best simulated scenarios.

6.3 Best Scenario Performance at CT level

In this section, we present the results of our investigation of the spatial distribution of crime
location coverage at CT level. We look at the two best performing scenarios, that of crime
area combined with popular venues-type destination strategy and taxi area combined with
popular venues destination strategy, both for robberies only. We then compare the real
number of robberies in each CT from the original crime dataset to the robberies covered
by the agents within the aforementioned simulated scenarios and assess whether there is a
pattern of CTs in which the scenario under-performs.

For this part of the experiment we mapped the robberies (at street segment level) onto
CTs, resulting in 1,303 robberies spread over 781 CTs, with a maximum of 9 robberies in a
CT (see Figure 15). In contrast, our simulated scenario using crime areas covered 1,178 of
those robberies, leaving 125 (9.59%) robberies in 53 (6.79%) CTs untraveled (see Figure 16).
The number of untraveled robberies per CT varies between 0 and 3. A visual comparison of
Figures 15 and 16 reveals little difference between actual robberies and robberies traveled
within the simulated scenario. Our simulated scenario using the taxi area strategy covered
1,175 robberies, leaving 128 (9.82%) robberies in 52 (6.66%) CTs untraveled (see Figure 17).
For this scenario, the maximum number of undiscovered robberies in a CT is also 3. In
our opinion, the differences between real and traveled robberies do not seem to be clustered
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in specific regions of the city, even though not all robbery locations are traveled by the
agents within each simulated scenario. This suggests a good performance balance across
the simulated scenario strategies in space.

Figure 15: Robbery loca-
tions per CT from the orig-
inal dataset, for 1 month
(June 2015).

Figure 16: Traveled rob-
bery locations for crime
area strategy combined
with popular venues-type
per CT.

Figure 17: Traveled rob-
bery locations for taxi area
strategy combined with
popular venues per CT.

7. Conclusion

The goal of the simulation was to formulate rules of offender movement behavior which
cumulatively match the spatial distribution of historic crime locations. In order to achieve
this, and taking into account that literature in criminology suggests that criminals are
prone to offend between frequently visited activity nodes (i.e., their awareness space), we
proposed and tested 35 offender mobility scenarios with various mobility strategies. Our
model instantiated structural and large-scale mobility data for NYC: (1) the NYC street
network with an abstract notion of residential areas and NYC population density; (2) a
set of NYC crime locations (June 2015) mapped to the street segments and CTs for model
evaluation; (3) venues and check-ins from LBSN (i.e., Foursquare) as proxies for activity
nodes and human activity; (4) aggregated taxi trip data mapped to CTs as a proxy for travel
patterns; and (5) NYC crime location data for the previous year (June 2014 to May 2015)
mapped to CTs as a proxy for attractive crime areas. Moreover, by explicitly creating a
simulation experiment with behavioral heuristics driving the mobility of the agent offenders,
we gave ourselves a solid quantitative, spatial basis for evaluating our work in terms of a
comparison between experimental results and known, empirical data.

7.1 Discussion and Implications

To determine the most useful strategies for simulating offender mobility, we analyzed and
compared the simulated scenarios for various numbers of agents in terms of adapted PAI
(a measure based on calculating a ratio between historic crime locations passed and the
distance traveled by the agents). In fact, our results showed that all of the scenarios
produced very high adapted PAI values (i.e., high performance) when simulating a low
number of agents. We understand this to be a consequence of a reduced accumulated
travel distance. As an artifact-of-simulation, this was a result of the agents not needing
to cover (travel by) a minimum percentage of historic crime locations within the simulated
environment. Knowing this in advance was, in part, why we ran the simulations with various
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numbers of agents and assessed them for a minimal crime coverage percentage. We achieved
improved results with more plausible numbers of simulated criminal perpetrators.

Our overall analysis based on average adapted PAI over varying numbers of agents within
the simulation, revealed a consistent over-performance of destination selection strategies
inferred with proxies for human activity (derived from LBSN). Indeed, using information
on activity nodes, including the popularity of those nodes, proves beneficial to the simulation
of offender mobility. In terms of agent area selection strategies, it appears that using static
distance selection (agents always traveling between 38,000 and 42,000 feet) performs best,
but only when assessing the average PAI over a varying number of agents. This result was
somewhat surprising because according to the mobility literature presented in Section 3, a
strategy that applied a Lévy flight trajectory selection (one that mimics individual human
movement) should have produced a better result, at least compared to agents traveling static
distances. Nonetheless, our work confirmed a hypothesis that finely tuned input parameters
— in this case adapted explicitly to NYC and in accordance with the average trip length
of the NYC population — leads to plausible output results, which are comparable to more
elaborate parameters inferring data from large-scale human mobility sources.

However, a more relevant measure with regard to the overall adapted PAI performance
is to consider which simulation scenarios performed best for covering a minimum percentage
of historic crime locations within the simulation, i.e., 90%. The highest adapted PAI value
was achieved using a proxy for attractive crime areas (from historic crime data for the
previous year) combined with a human activity proxy, simulating 475 agents. The next best
performance was achieved by using a travel patterns proxy (from taxi trip data) combined
with a human activity proxy, simulating 325 agents. Consequently, the scenarios including
rich real data (LBSN in combination with taxi trip data or historic crime data) performed
best compared to various strategies using only average travel distance within NYC. This
was again consistent with our hypothesis that an empirically grounded and explicit ABM
using large-scale mobility data would prove a powerful complex system diagnostic tool.

We engaged in a deeper analysis of the results, focusing on exploring the two best
performing scenarios in terms of simulated crime types (i.e., evaluating only agents passing
specific types of crime locations). In terms of average PAI over a varying number of agents,
both scenarios (proxies for travel patterns and attractive crime areas combined with a
human activity proxy) performed best for robbery, followed by grand larceny (performing
similarly to all crime types combined). This result still holds when assessing the scenarios
for a 90% coverage of crimes, and both scenarios perform best for robbery. The highest
performance was achieved by an attractive crime areas proxy combined with a human
activity proxy for 300 agents, with an adapted PAI reaching a value of 1.41. The next
best performance was the scenario combining a travel patterns proxy with a human activity
proxy in a simulation using 225 agents, which achieved an adapted PAI value of 1.38. Hence,
we conclude that those scenarios that included large-scale human activity data proved most
useful for simulating offender mobility in robbery simulations. Moreover, adding taxi trip
data as a proxy for travel patterns resulted in simulation outputs comparable to using
historic crime data as a proxy for attractive crime areas.

Consequently, our scenarios, especially those including real data, are most useful for
simulating offender mobility for specific street crimes as opposed to other crime types or
all crime types combined. On the one hand, these results are in line with our previous
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research, which showed that accounting for human activity (e.g. Foursquare venues and
check-ins) and travel patterns (taxi trip data) improved predictive accuracy, especially for
models predicting robbery and grand larceny (Kadar et al., 2017; Kadar & Pletikosa, 2018).
On the other hand, the range of adapted PAI values achieved for our models was within
the lower but acceptable range compared to PAI values in the works of others, e.g. between
1.2 and 3.37 for burglary prediction models (Adepeju, Rosser, & Cheng, 2016). Note that
the values for adapted PAI achieved in this simulation are not directly comparable to the
original PAI applied in crime prediction models. In this simulation we counted historic
crime locations seen by agents without accounting for crime committing capabilities. The
original PAI only counts occurrences of crime.

Finally, we evaluated the spatial coverage of historic crime locations at CT level for our
best performing scenario in order, to gain insight as to whether or not there were recog-
nizable spatial patterns of crime locations not covered by the agents within the simulation.
We did not recognize any spatial patterns and therefore conclude that the simulation for
these scenarios was balanced and covered crime locations equally throughout the CTs.

The results presented by this paper provide extensive insights into the construction
of more accurate rules governing offender mobility in crime simulations and suggests that
integrating more realistic offender mobility strategies, informed with novel large-scale human
mobility data, can improve such simulations.

7.2 Limitations and Future Work

Simulating criminal behavior can improve our understanding of the mechanisms underlying
crime and contribute to: (1) more informed testing of crime prevention strategies and (2)
more accurate crime predictions. Developing informed rules governing the spatial movement
strategies of mobile agents is crucial for crime simulations. Building on our previous work
(Rosés et al., 2018) and the work of many others, this paper extends the state of the art by
proposing and testing numerous offender mobility scenarios.

We urge caution regarding the limitations inherent to the datasets used for inferring
different types of proxies. The robustness and validity of the proxies for human activity
and mobility have not been tested. We have relied on existing literature and studies to
choose the datasets used to build the proxies. Thus, we cannot be sure about the accuracy
with which our proxies reproduce reality. This implies that our results are preliminary.
Moreover, we acknowledge the bias in the datasets (see Section 3). First, Foursquare data
has geographical and social biases (e.g. user age). Second, taxi trip data is also biased
towards specific areas of the city, such as Manhattan. Considering that we have aggregated
data from those datasets, these issues are mitigated. We also acknowledge the inherent bias
in historic crime data, as it only contains crimes reported to the police, leaving unreported
crimes unaccounted for. Moreover, these biases may manifest themselves geographically
if the data is skewed towards certain city areas. This could have impacted the results
in a positive way if each data set is biased towards the city areas with more crime (e.g.
Manhattan) or in a negative way if each dataset is biased towards different areas of the city.
We encourage further research to verify the presented results using different data sources.

Further limitations include the fact that our study was only conducted for NYC and
may not be valid for other cities, especially those cities with basic structural differences.
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Future work could compare the performance of mobility strategies across different cities.
Furthermore, in order to understand the impact of improving offender mobility rules in yet
more general crime simulations, our crime simulation should be extended to include agents
having the capability to decide whether or not to commit a new crime (as in Peng & Kurland,
2014). This additional capability can be implemented with or without the mobility behavior
described in this paper. In general, the combination of heuristic mobility strategies, as we
have shown in this work, with the capability of the agents to decide whether or not to offend
(commit a new crime along their travel paths) would provide further insights into the utility
of crime simulation.

In terms of model evaluation, we suggest that future work might involve the use of a ma-
chine learning technique perhaps one like that of Mnih, Kavukcuoglu, Silver, Rusu, Veness,
Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, Petersen, Beattie, Sadik, Antonoglou,
King, Kumaran, Wierstra, Legg, and Hassabis (2015) or Mnih, Puigdomènech Badia, Mirza,
Graves, Harley, Lillicrap, Silver, and Kavukcuoglu (2016). It might be possible to construct
an engine similar to theirs and to use it to assess the emergence (or non-emergence) of
patterns in the data, especially when assessing how the simulation covers crime patterns
over various areas of the city.

In addition to highlighting the importance of offender mobility within crime simulation,
this work also highlights the impact of explicit ABM techniques that incorporate: (1) en-
vironmental data into crime simulations; (2) LBSN data; (3) and taxi trip data. These
can all improve crime simulations by plausibly accounting for human activity. We argue
for the importance of including newly available, rich data sources to improve crime simu-
lations, especially for increasing the transferability of simulated results to the real-world.
In summary, we believe that scientific research like ours, and like the many other works we
have cited in this paper, has the potential to contribute to the success of law enforcement
organizations and individual police officers around the world as they test crime prevention
strategies in silico.
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